目的:实现锂电池薄膜表面缺陷特征的有效提取。方法采用稀疏分解算法实现表面去噪,即通过选取合适的原子函数,在过完备字典中对含有点噪声、高斯噪声、椒盐噪声和加乘噪声背景下的缺陷图像进行稀疏分解迭代,通过观察法得到终止迭代值作为经验值,并将该经验值用于特定噪声背景下的稀疏分解终止迭代条件,得到去噪后的缺陷图像。最后将该方法与中值滤波技术进行比较。结果稀疏分解的去噪性能远优于中值滤波,对锂电池薄膜缺陷有很好的还原性。结论稀疏分解算法能够较好地去除锂电池薄膜图像中的噪声,从而识别出锂电池薄膜缺陷。
Objective To effectively extract the defect features on the surface of lithium battery film. Methods Surface de-noising was realized by sparse decomposition algorithm, i. e. , the best atomic function was selected, and sparse decomposition iteration was conducted for defect images with point noise, gaussian noise, salt and pepper noise, as well as additive and multiplicative noise in the over-complete dictionary. The terminating iteration value was got by observation and used as the experience value as the sparse de-composition iteration termination condition for denoising under specific background noise, in order to obtain the denoised defect im-age. Finally, this method was compared with the median filtering technology. Results Sparse decomposition denoising showed much better performance than the median filter, and had a good recovery for defects in lithium battery film. Conclusion Sparse decomposi-tion algorithm could well remove the noises in lithium battery film image to identify the defects of lithium battery film.
参考文献
[1] | 刘学山 .基于机器视觉的锂离子电池极片检测系统的研究与设计[D].广州:华南理工大学,2010. |
[2] | 赵慧阳 .基于机器视觉的太阳能电池片表面缺陷检测的研究[D].秦皇岛:燕山大学,2011. |
[3] | 王磊 .基于机器视觉的电池表面缺陷检测技术研究[D].中国科学技术大学,2011. |
[4] | 王延忠,魏彬,宁克焱,韩明,沈蓉.Cu基粉末冶金材料表面表征与图像阀值接触分析[J].表面技术,2014(01):40-43. |
[5] | 代小红,王光利.基于模式识别的零件表面瑕疵图像提取的设计与实现[J].表面技术,2011(05):109-112. |
[6] | 纪钢,韩逢庆,唐伦科.镀层腐蚀特征的图像模式识别算法研究[J].表面技术,2001(03):23-26. |
[7] | 王建英;尹忠科.信号与图像的稀疏分解及初步应用[M].成都:西南交通大学出版社,2006 |
[8] | Mallat S.G.;Zhifeng Zhang .Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing: A publication of the IEEE Signal Processing Society,1993(12):3397-3415. |
[9] | 赵瑞珍;刘晓宇;LI Ching-chung 等.基于稀疏表示的小波去噪[J].中国科学:信息科学,2010,40(01):33-40. |
[10] | MARK D. PLUMBLEY;THOMAS BLUMENSATH;LAURENT DAUDET;REMI GRIBONVAL;MIKE E. DAVIES .Sparse Representations in Audio and Music: From Coding to Source Separation[J].Proceedings of the IEEE,2010(6):995-1005. |
[11] | Neff R.;Zakhor A. .Matching pursuit video coding .I. Dictionary approximation[J].IEEE Transactions on Circuits and Systems for Video Technology,2002(1):13-26. |
[12] | M. JALAL FADILI;JEAN-LUC STARCK;JEROME BOBIN;YASSIR MOUDDEN .Image Decomposition and Separation Using Sparse Representations: An Overview[J].Proceedings of the IEEE,2010(6):983-994. |
[13] | 王春光 .基于稀疏分解的心电信号特征波检测及心电数据压缩[D].国防科学技术大学,2009. |
[14] | 刘辉,杨俊安,黄文静.声信号并行稀疏分解去噪方法研究[J].电路与系统学报,2012(06):64-70. |
[15] | 李扬,郭树旭.基于稀疏分解的大功率半导体激光器1/f噪声参数估计的新方法[J].物理学报,2012(03):189-194. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%