欢迎登录材料期刊网

材料期刊网

高级检索

目的:研究变形量对690合金电化学行为的影响。方法采用动电位极化、电化学阻抗和高温高压浸泡实验,结合扫描电子显微镜( SEM)、X射线光谱仪( EDX)和X射线光电子能谱( XPS),研究不同变形量的690合金传热管在核电模拟液中的腐蚀行为。结果在常温常压下,50%变形量试样的自腐蚀电位比25%变形量试样正140 mV,维钝电流密度显著降低,阻抗模值高出约10倍。高温高压下浸泡后, XPS分析显示,50%变形量试样表面腐蚀产物膜中的Cr2 O3含量远高于25%变形量试样,其富Cr内层致密,氧化层更厚。结论50%变形量的690合金表面形成的钝化膜及腐蚀产物膜对基体的保护作用更强。

ABSTRACT:Objective To study the effect of rolling deformation on the electrochemical behavior of 690 Alloy. Methods Poten-tiodynamic polarization, electrochemical impedance spectroscopy ( EIS) and high temperature and pressure immersion tests, com-bined with scanning electron microscopy ( SEM) , X-ray spectroscopy ( EDX) and X-ray photoelectron spectroscopy ( XPS) tech-niques, were used to investigate the corrosion behavior of 690 alloy heat transfer tubes with different degrees of deformation in the nuclear simulation solution. Results Under the atmospheric pressure, the corrosion potential of 690 alloy with 50% deformation was
140 mV larger than that of 690 alloy with 25% deformation. Furthermore, the passive current density of the former was significantly declined and the impedance modulus was 10 times higher. After soaking at high temperature and high pressure, XPS results showed that when the experiential materials were immersed for 200 h, 690 alloy with 50% deformation had a higher Cr2 O3 content in the corrosion product film than 690 alloy with 25% deformation, and its dense inner layer of Cr-rich oxide film was much thicker. Conclusion The passivation film and corrosion products layer formed on the surface of alloy 690 with 50% deformation had a better protective effect on the substrate.

参考文献

[1] THUVANDER M;STILLER K .Microstructure of a Boron Con-taining High Purity Nickel-based Alloy 690[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2000,281(1):96-103.
[2] 罗坤杰,张麦仓,王宝顺,董建新.Hastelloy G-3合金热变形特性研究[J].稀有金属材料与工程,2011(04):605-609.
[3] Chen YY;Chou LB;Shih HC .Factors affecting the electrochemical behavior and stress corrosion cracking of Alloy 690 in chloride environments[J].Materials Chemistry and Physics,2006(1):37-49.
[4] FRED H H;RAUL B R.The Role of Hydrogen and Creep in Intergranular Stress Corrosion Cracking of Alloy 600 and Al-loy 690 in PWR Primary Water Environments-A Review[A].Holland:Elsevier,2004
[5] SeJin Ahn;V. Shankar Rao;HyukSang Kwon;UhChul Kim .Effects of PbO on the repassivation kinetics of alloy 690[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2006(5):1137-1153.
[6] 孙荣鹏,王俭秋,韩恩厚.乙醇胺ETA浓度对核电站二回路碳钢和镍基合金690腐蚀的影响[J].中国腐蚀与防护学报,2013(02):97-103.
[7] 华惠中,黄春波,吕战鹏,杨武.800、600和690合金的铅致应力腐蚀破裂[J].腐蚀与防护,2001(11):483-488.
[8] Peng B;Lu BT;Luo JL;Lu YC;Ma HY .Investigation of passive films on nickel Alloy 690 in lead-containing environments[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2008(3):333-340.
[9] B.T. Lu;J.L. Luo;B. Peng .Condition for Lead-Induced Corrosion of Alloy 690 in an Alkaline Steam Generator Crevice Solution[J].Corrosion: The Journal of Science and Engineering,2009(9):601-610.
[10] 刘飞华,李成涛,张新,李岩,任爱.690合金的Pb致应力腐蚀行为[J].北京科技大学学报,2013(08):1034-1039.
[11] Effects of hydrogen on the anodic behavior of Alloy 690 at 60 ℃[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2010(4):1228.
[12] 孟凡江,王俭秋,韩恩厚,柯伟.划伤690TT合金在高温含氧水中应力腐蚀裂纹萌生的研究[J].中国腐蚀与防护学报,2013(05):413-418.
[13] Fanjiang Meng;En-Hou Han;Jianqiu Wang;Zhiming Zhang;Wei Ke .Localized corrosion behavior of scratches on nickel-base Alloy 690TT[J].Electrochimica Acta,2011(4):1781-1785.
[14] Casales M.;Salinas-Bravo VM.;Martinez-Villafane A.;Gonzalez-Rodriguez JG. .Effect of heat treatment on the stress corrosion cracking of alloy 690[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):223-230.
[15] 黄军波,吴欣强,韩恩厚,柯伟.材料在高温高压水溶液中的电化学行为研究现状与进展[J].中国腐蚀与防护学报,2008(06):374-380.
[16] 韩恩厚;吴欣强;孙华.304不锈钢在模拟核电高温高压水中的电化学行为研究[A].杭州:中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会,2010
[17] SHUANG XIA;BANGXIN ZHOU;WENJUE CHEN .Grain Cluster Microstructure and Grain Boundary Character Distribution in Alloy 690[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2009(12):3016-3030.
[18] 郦晓慧,王俭秋,韩恩厚,柯伟.核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水中的腐蚀行为研究[J].金属学报,2012(08):941-950.
[19] 骆鸿,李晓刚,肖葵,董超芳.304不锈钢在西沙海洋大气环境中的腐蚀行为[J].北京科技大学学报,2013(03):332-338.
[20] JONSCHER A K .Physical Basis of Dielectric Loss[J].Na-ture,1975,253:717-719.
[21] 慕立俊,张军,赵文轸,张春婉.气液双相流条件下HCO3-对J55钢腐蚀行为的影响[J].天然气工业,2009(07):102-105.
[22] 谭化超,董建新,张麦仓,姚志浩.690合金高温连续变形动态再结晶行为[J].北京科技大学学报,2013(12):1607-1614.
[23] 张志明,王俭秋,韩恩厚,柯伟.丁磨态690TT合金经不同时间浸泡后表面氧化膜结构分析[J].金属学报,2011(07):823-830.
[24] STELLWAGS B .The Mechanism of Oxide Film Formation on Austenitic Stainless Steels in High Temperature Water[J].Corrosion Science,1998,40(2):337-370.
[25] Terachi T;Fujii K;Arioka K .Microstructural characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320 degrees C[J].Journal of Nuclear Science and Technology,2005(2):225-232.
[26] 张志明,王俭秋,韩恩厚,柯伟.电解抛光态690TT合金经不同时间浸泡后表面氧化膜结构分析[J].金属学报,2011(07):831-838.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%