欢迎登录材料期刊网

材料期刊网

高级检索

目的:研制一种新型添加纳米Y2 O3的过共晶Fe-Cr-C 堆焊合金,改善堆焊合金粗大的初生M7 C3碳化物,提高堆焊合金的耐磨性。方法采用明弧堆焊的方法制作堆焊合金,用金相电子显微镜对其表面微观组织进行观察,用洛氏硬度计对其表面硬度进行测量,用砂带摩擦磨损试验机对其表面耐磨性进行评价,用扫描电子显微镜对其磨损形貌进行观察。最后,利用错配度理论对M7 C3的细化机理进行分析。结果过共晶Fe-Cr-C堆焊合金由初生M7 C3和共晶组织(共晶M7 C3、奥氏体及部分马氏体)组成。未添加Y2 O3的堆焊合金初生M7 C3比较粗大,其平均尺寸在22μm,硬度为55HRC,磨损量为0.85 mg/mm2。经纳米Y2 O3改性之后,堆焊合金的初生 M7 C3尺寸变小,其平均尺寸为16μm,硬度为57HRC,磨损量减少为0.59 mg/mm2,Y2O3的(001)面与正交 M7C3的(100)面之间的二维错配度为8.59%。结论 Y2 O3可以成为M7 C3的非均质形核核心,从而细化了过共晶Fe-Cr-C 堆焊合金的初生M7 C3碳化物,提高了过共晶Fe-Cr-C堆焊合金表面耐磨性。

ABSTRACT:Objective To develop novel hypereutectic Fe-Cr-C hardfacing alloys ( Y2 O3-free and Y2 O3-modified, respectively)
so as to improve the coarse carbides and increase the wear resistance of Fe-Cr-C hardfacing alloys. Methods The hardfacing alloys were deposited by the automatic open arc surfacing welding method. The microstructures were observed by optical microscopy. Meanwhile, the macro hardness of the hardfacing alloy surface was measured by the Rockwell hardness tester. The wear resistance of the hardfacing alloy surface was evaluated by the abrasive wear test. Worn morphology was observed by field emission scanning electron microscopy. Moreover, the mechanism of the microstructure refinement by the two-dimensional misfit theory was also dis-cussed. Results The results showed that the microstructures of the hardfacing alloy consisted of the primary M7 C3( M=Cr, Fe) car-bide and eutectic structure ( eutectic M7 C3 carbide+retained austenite and its product) . The average size of primary carbide was a-bout 22 μm. The mass loss and the hardness of the Y2 O3-free alloy were 0. 85 mg/mm2 and 55HRC, respectively. After adding Y2 O3 , the average size of carbide was about 16μm. The mass loss of the coating was 0. 59 mg/mm2 and the hardness was 57HRC. The two-dimensional lattice misfit between the face (001) of Y2 O3 and the face (100) of orthorhombic M7 C3 was 8. 59%. Con-clusion By adding Y2 O3 as the heterogeneous nuclei, the primary M7 C3 carbide was refined and the wear resistance of the hypereu-tectic Fe-Cr-C hardfacing alloy surface can be improved.

参考文献

[1] 郭小燕,张津,张叶成,孙智富.表面技术在模具修复中的应用进展[J].表面技术,2007(06):70-73,76.
[2] Soner Buytoz;M. Mustafa Yildirim;Hulya Eren .Microstructural and microhardness characteristics of gas tungsten arc synthesized Fe-Cr-C coating on AISI 4340[J].Materials Letters,2005(6):607-614.
[3] Buchanan, Vernon E. .Solidification and microstructural characterisation of iron-chromium based hardfaced coatings deposited by SMAW and electric arc spraying[J].Surface & Coatings Technology,2009(23):3638-3646.
[4] D. N. Hanlon;W. M. Rainforth;C. M. Sellars .The rolling/sliding wear response of conventionally processed and spray formed high chromium content cast iron at ambient and elevated temperature[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,1999(1):587-599.
[5] 杨庆祥,周野飞,杨育林,齐效文.Fe-Cr-C系耐磨堆焊合金研究进展[J].燕山大学学报,2014(3):189-196,282.
[6] CHANG C M;HSIEH C C;LIN C M et al.Effect of Carbon Content on Microstructure and Corrosion Behavior of Hyper-eutectic Fe-Cr-C Claddings[J].Materials Chemistry and Physics,2010,123:241.
[7] Yuksel N.;Sahin S. .Wear behavior-hardness-microstructure relation of Fe-Cr-C and Fe-Cr-C-B based hardfacing alloys[J].Materials & design,2014(Jun.):491-498.
[8] WIENGMOON A;PEARCE J T H;CHAIRUANGSRI T .Re-lationship between Microstructure, Hardness and Corrosion Resistance in 20wt.%Cr,27wt.%Cr and 36wt.%Cr High Chromium Cast Irons[J].Materials Chemistry and Physics,2011,125:739-748.
[9] CORONADO J J .Effect of(Fe,Cr)7C3 Carbide Orientation on Abrasion Wear Resistance and Fracture Toughness[J].WEAR,2011,270:287-93.
[10] S. Imurai;C. Thanachayanont;J.T.H. Pearce.Effects of Mo on microstructure of as-cast 28 wt.% Cr-2.6 wt.% C-(0-10) wt.% Mo irons[J].Materials Characterization,2014:99-112.
[11] IMURAI S;THANACHAYANONT C;PEARCE J T H et al.Effects of W on Microstructure of As-cast 28wt.%Cr-2. 6wt.%C-(0~10)wt.%W Irons[J].Materials Character-ization,2015,99:52-60.
[12] Qi, X.;Jia, Z.;Yang, Q.;Yang, Y. .Effects of vanadium additive on structure property and tribological performance of high chromium cast iron hardfacing metal[J].Surface & Coatings Technology,2011(23/24):5510-5514.
[13] Xiaohui Zhi;Jiandong Xing;Hanguang Fu;Bing Xiao .Effect of niobium on the as-cast microstructure of hypereutectic high chromium cast iron[J].Materials Letters,2008(6/7):857-860.
[14] R. J. Chung;X. Tang;D. Y. Li;B. Hinckley;K. Dolman .Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2013(1/2):695-706.
[15] R. J. Chung;X. Tang;D. Y. Li;B. Hinckley;K. Dolman .Effects of titanium addition on microstructure and wear resistance of hypereutectic high chromium cast iron Fe-25wt.%Cr-4wt.%C[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2009(Pt.1):356-361.
[16] Mirjana Filipovic;Zeljko Kamberovic;Marija Korac;Milorad Gavrilovski .Microstructure and mechanical properties of Fe-Cr-C-Nb white cast irons[J].Materials & design,2013(May):41-48.
[17] T.L Chia;M.A. Easton;S.M. Zhu .The effect of alloy composition on the microstructure and tensile properties of binary Mg-rare earth alloys[J].Intermetallics,2009(7):481-490.
[18] Chen, Q.;Huang, Z.;Zhao, Z.;Hu, C..Thermal stabilities, elastic properties and electronic structures of B2-MgRE (RE = Sc, Y, La) by first-principles calculations[J].Computational Materials Science,2013:196-202.
[19] Liu XB;Yu RL .Effects of La2O3 on microstructure and wear properties of laser clad gamma/Cr7C3/TiC composite coatings on TiAl intermatallic alloy[J].Materials Chemistry and Physics,2007(2/3):448-454.
[20] Yinhu Qu;Jiandong Xing;Xiaohui Zhi;Jiyun Peng;Hanguang Fu .Effect of cerium on the as-cast microstructure of a hypereutectic high chromium cast iron[J].Materials Letters,2008(17/18):3024-3027.
[21] YANG Jian,HAO Feifei,LI Da,ZHOU Yefei,REN Xuejun,YANG Yulin,YANG Qingxiang.Effect of RE oxide on growth dynamics of primary austenite grain in hardfacing layer of medium-high carbon steel[J].稀土学报(英文版),2012(08):814-819.
[22] HAO F F;LI D;DAN T et al.Effects of Rare Earth Oxide on Hardfacing Metal Microstructure of Medium Carbon Steel and Its Refinement Mechanism[J].Journal of Rare Earths,2011,29:609-613.
[23] Y.F. Zhou;Y.L. Yang;Y.W.Jiang.Fe-24 wt.%Cr-4.1 wt.%C hardfacing alloy: Microstructure and carbide refinement mechanisms with ceria additive[J].Materials Characterization,2012:77-86.
[24] 欧忠文,陈国需,刘朝辉,徐滨士,程鹏,杨汉民.纳米表面工程的基本问题研究[J].表面技术,2004(05):1-3,42.
[25] Wu B;Xu BS;Zhang B;Lu YH .Preparation and properties of Ni/nano-Al2O3 composite coatings by automatic brush plating[J].Surface & Coatings Technology,2007(16/17):6933-6939.
[26] Wei-Yi Tu;Bin-Shi Xu;Shi-Yun Dong .Electrocatalytic action of nano-SiO_2 with electrodeposited nickel matrix[J].Materials Letters,2006(9/10):1247-1250.
[27] Xiaowei Zhou;Yifu Shen.Beneficial effects of CeO_2 addition on microstructure and corrosion behavior of electrodeposited Ni nanocrystalline coatings[J].Surface & Coatings Technology,2013:433-446.
[28] 杜挺 .稀土元素在金属材料中的一些物理化学作用[J].金属学报,1997,33:69-76.
[29] BRAMFITT B L .The Effect of Carbide and Nitride Addi-tions on the Heterogeneous Nucleation Behavior of Liquid I-ron[J].Metallurgical and Materials Transactions,1970,1:1987-1995.
[30] KATAGIRI S;ISHIZAWA N .A New High Temperature Modification of Face-centered Cubic Y2 O3[J].Powder Dif-fraction,1993,8(1):60.
[31] DE Mol Van Otterloo J L;DE Hosson J T M .Microstructural Features and Mechanical Properties of a Cobalt-based Laser Coating[J].Acta Materialia,1997,45(3):1225-1236.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%