欢迎登录材料期刊网

材料期刊网

高级检索

目的:研究超音速微粒沉积过程中,不同颗粒的沉积状态以及后续颗粒的夯实作用对涂层沉积的影响规律。方法采用显式非线性有限元软件LS-DYNA模拟单层颗粒与基体的碰撞,采用自动二维单面接触ASS2D(Automatic 2-D single surface contact)求解接触过程,研究超音速微粒沉积中多颗粒沉积行为、后续颗粒碰撞对涂层成形的影响规律。采用超音速微粒沉积技术在铝合金表面制备Al-Si涂层,通过扫描电子显微镜( SEM)分析涂层的表面/截面形貌,进而验证模型的可靠性。结果多颗粒沉积过程中,颗粒与颗粒之间相互嵌合,形成互锁效应,有利于提高涂层的结合强度。后续颗粒对先沉积颗粒具有夯实作用,夯实作用使颗粒扁平化程度加大,同时使颗粒之间紧密结合,存在夯实作用的颗粒压缩率提高至3倍以上,有效避免了涂层孔隙和裂纹的形成。通过观察所制备的Al-Si涂层的表面/截面形貌,证明模型具有可靠性。结论采用数值模拟方法探讨超音速微粒沉积多颗粒在基体上的变形行为,可为超音速微粒沉积的应用提供理论依据。

ABSTRACT:Objective To study deformation behavior of supersonic multi-particles and analyze laws of the effect of deposition state of different particles and continuous particle compaction on coating formation. Methods The dominant non-linear finite ele-ment software LS-DYNA was used to simulate the impact of single particles and matrix, the automatic 2-D single surface contact was used to calculate the impact process so as to study the multi-particle deposition behavior and the influence pattern of continuous particle collision. In addition, the scanning electron microscopy ( SEM) was used to analyze morphologies of the Al-Si coatings pre-pared by supersonic particles deposition ( SPD) process on Al alloy to verify the reliability of the model. Results In the impinging process, multi-particles showed interlocking and extrusion effects between particles and this phenomenon was favorable for increase of adhesive strength. Also, the temping effect of continuous particles on pre-deposited particle increased the flattening of the parti-cles and made the compression ratio increased by as far as 3 times, meanwhile, the temping effect avoided the porosity and flaws during the deposition process. The observation of the surface/section morphology of the prepared Al-Si coating proved the reliability of the model. Conclusion Numerical simulation methods can be used to investigate deformation behavior of supersonic particles, and provide a theoretical basis for the application of supersonic particle deposition.

参考文献

[1] JONES R;MATTHEWS N;RODOPOULOS C A et al.On the Use of Supersonic Particle Deposition to Restore the Structure Integrity of Damaged Aircraft Structures[J].Inter-national Journal of Fatigue,2011,33:1257-1267.
[2] 李文亚,李长久.冷喷涂特性[J].中国表面工程,2002(01):12-16.
[3] 周香林,苏贤涌,CUI Hua,崔华,郭辉华,巫湘坤,张济山.颗粒材料特性对冷喷涂撞击行为影响的模拟研究[J].金属学报,2008(11):1286-1291.
[4] 朱胜;刘玉项;王晓明 等.氢气流量对超音速微粒沉积Al-Si涂层的影响[J].中国有色金属学报,2014,24(6):1504-1509.
[5] GYUYEOL B;XIONG Yu-ming;KUMAR S et al.General Aspect of Interface Bonding in Kinetic Sprayed Coatings[J].Acta Materials,2008,56:4858-4868.
[6] 郑建新,金耀辉,刘传绍.真空冷喷涂铜颗粒加速特性数值研究[J].表面技术,2013(01):5-8.
[7] 田甜,郑振环,李强.等离子喷涂热障涂层逐道沉积累积应力的模拟[J].表面技术,2012(06):18-21,25.
[8] BAE G;KUMAR S;YOON S et al.Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coa-ting[J].ACTA MATERIALIA,2009,57(19):5654.
[9] M. Grujicic;C.L. Zhao;W.S. DeRosset .Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process[J].Materials & Design,2004(8):681-688.
[10] 基于稳定最大应变的冷喷涂粒子临界速度预测[J].中国表面工程,2012(06):96-100.
[11] ZHOU X L;MOU S J;WU X K et al.Deposition Behavior of Multi-particle Impact in Cold Spraying Process[J].Inter-national of Minerals,Metallurgy and Materials,2010,17(5):635-640.
[12] 孟宪明,张俊宝,韩伟,梁永立,杨晓萍,赵杰.碰撞速度对冷喷涂粒子沉积行为影响的数值模拟研究[J].宝钢技术,2011(05):17-22.
[13] ASSADI H;GARTNER F;TOLTENHOFF T et al.Bonding Mechanisms in Cold Gas Spraying[J].Acta Materials,2003,51:4379-4394.
[14] JOHNSON G R;COOK W H.A Constitutive Model and Da-ta for Metals Subjected to Large Strains,High Strain Rates,and High Temperatures[A].Hague:[s.n.],1983:541-547.
[15] 巫湘坤,周香林,崔华,张济山.多颗粒沉积模型预测铜和铝冷喷涂层微观形貌[J].北京科技大学学报,2012(12):1391-1399.
[16] 查柏林,乔素磊,黄定园,袁晓阳.粉末粒度对HVOF制备WC-12Co涂层性能的影响[J].热加工工艺,2014(04):138-140.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%