欢迎登录材料期刊网

材料期刊网

高级检索

目的:解决镀镍层可焊性不良的问题,使得光电子器件外壳镀镍层可焊性满足回流焊要求,并且保存半年后可焊性不降低。方法以氨基磺酸镍为体系,考察温度、pH值、电流密度与沉积速率的关系,采用回流焊和浸润法对镀层可焊性进行表征,并考察镀层的质量、结合力及盐雾性能指标。结果镀液体系在比较宽泛的电流密度和温度范围内,都能得到可焊性优良的镀层,其沉积速率随电流密度的增大呈线性增加。浸润法和回流焊接试验表明,镀层可焊性满足要求。在稳态湿热(45℃, RH=95%)环境中48 h或恒温烘烤(150℃,1 h)后,镀层可焊性仍均满足要求。结论在电流密度1~5 A/dm2,pH值3.2~4.4,温度40~55℃的条件下能得到优良的可焊性镀层,满足回流焊对镀层可焊性的要求,并且放置半年后可焊性不降低。

ABSTRACT:Objective To solve the problem of poor solderability of nickel plating layer, make the solderability of the optoelec-tronic device shell meet the requirements of reflow soldering and guarantee the solderability not to reduce after storage for half a year. Methods Taking nickel amino-sulfonate as a system, this paper investigated the relationship among temperature, pH, current density and deposition rate by adopting the reflow soldering and Tin dipping method to characterize the solderability of the coating and investigated the coating quality, bonding force and performance metrics in the salt spray test. Results The plating solution sys-tem can obtain a plating layer with good solderability within broader ranges of current density and temperature. The deposition rate increased as a linear with the increasing current density and the solderability was proved good. The infiltrating and reflow soldering experiments showed that the solderability of the plating layer all met the requirements in the 45 ℃ steady-state humid environment (95% RH for 48 h) or under the condition of constant baking at 150 ℃ for 1 hour. Conclusion When the current density is be-tween 1 A/dm2 and 5 A/dm2 , pH is 3. 2 to 4. 4 and the temperature control is between 40℃ and 55℃, the excellent solderability of plating layer can be obtained and meet the requirements of reflow soldering on the solderability of plating layer and can be kept for half a year with no reduction.

参考文献

[1] 辛峰杰.常见的几种SMT焊接缺陷及解决方法[J].电子质量,2005(11):38-39.
[2] 攸宝成.SMT焊接技术发展动态[A].广州:机电部工艺研究所,1992:1-10.
[3] 周振凯 .浅谈影响半导体器件引线可焊性的因素[J].电镀与环保,1990,10(1):41-42.
[4] 李承虎,邹文忠.元器件可焊性测试技术研究[J].企业技术开发(学术版),2014(03):38-39.
[5] 陈勿初.浅淡镀镍件的可焊性[J].电镀与环保,2005(03):42-42.
[6] 邹森,李亚明,杨凤梅.电流密度对氨基磺酸镍电镀镍镀层的影响[J].山东化工,2011(08):55-56,60.
[7] SHARIF Ahmed;CHAN Y C .Interfacial Reaction on Elec-trolytic Ni and Electroless Ni(P)Metallization with Sn-In-Ag-Cu Soder[J].Journal of Alloys and Compounds,2005,393:135-140.
[8] 苏鹤林;张华 .镀镍层防钝化与可焊性[J].电镀与环保,1996,16(3):33-34.
[9] 程永红.可焊性光亮镀镍工艺[J].电镀与环保,2006(01):23-24.
[10] 王姗姗,祝要民,任凤章,殷立涛.电镀工艺对镍纳米膜微观结构及硬度的影响[J].表面技术,2010(02):52-54.
[11] 羊秋福.印制电路板氨基磺酸盐镀镍工艺[J].电镀与精饰,2004(01):23-24,26.
[12] 张甲敏,许光日,陈军龙,贾永泰.钢带氨基磺酸盐镀镍工艺[J].电镀与涂饰,2007(06):7-9.
[13] 魏兴无 .电子元器件的可焊性及检测方法[J].中南民族学院学报(自然科学版),1999,18(3):16-19.
[14] 李承虎,邹文忠.元器件可焊性测试技术研究[J].企业技术开发(学术版),2014(03):38-39.
[15] 冯庆,冯生,杨清海,杨文波.高可焊性电镀纯锡工艺及镀层性能测试[J].电子工业专用设备,2008(01):10-13,41.
[16] 曹志洪,黄俊华,马军.关于可焊性试验的试验方法及设备研制的探讨[J].电子产品可靠性与环境试验,2013(05):37-39.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%