欢迎登录材料期刊网

材料期刊网

高级检索

目的:提高碳化硅纤维的高温力学性能。方法以含铍聚碳硅烷为原料,采用先驱体转化法制备含铍碳化硅纤维,对含铍碳化硅纤维进行SEM和XRD分析,并对其常温和高温力学性能进行测试。结果制得的纤维直径在20~30μm,表面光滑,无明显缺陷。纤维常温拉伸强度为600~700 MPa,与商品级碳化硅纤维有较大差距,但在空气中800℃加热2 h后,拉伸强度提升30%以上。在空气中1100℃加热2 h后,纤维表面形貌无明显改变,拉伸强度仍能保持90%以上。在空气中1200℃加热2 h后,纤维表面出现裂纹,导致其拉伸强度明显下降。普通SiC纤维的拉伸强度随着空气热处理温度的升高而不断下降,并且在相同的空气热处理温度下,其强度保留率明显低于含铍碳化硅纤维。在空气热处理过程中,含铍碳化硅纤维表面生成了SiO2层,而普通碳化硅纤维却没有生成SiO2。结论含铍碳化硅纤维在空气中具有优异的耐高温性能,原因是Be元素促使纤维表面的SiC氧化生成了SiO2保护层,一方面阻止了纤维内部材料被进一步氧化,另一方面对纤维表面起到了加强作用。

ABSTRACT:Objective To improve the mechanical properties of SiC fibers. Methods PBeCS was used as the precursor, and SiC fibers containing beryllium were produced by polymer-derived method. SEM, XRD and tensile strength tests were carried out. Results SiC fibers containing beryllium had a diameter between 20 to 30μm, and their surface was smooth. With a tensile strength of 600~700 MPa, the fibers were not as good as the current commercial SiC fibers, however, after being treated under 800 ℃ for 2 h in the air, SiC fibers containing beryllium had an increase of over 30% on tensile strength, and without obvious changes in sur-face morphology. These fibers kept more than 90% strength after being treated at 1100 ℃ for 2 h in the air. However, after being treated at 1200 ℃ for 2 h in the air, cracks appeared on the surface of the fibers, along with a sharp decrease of tensile strength. When the temperature of heat treating rose, the tensile strength of ordinary SiC fibers kept decreasing which was always lower than that of SiC fibers containing beryllium. During the heat treatment in the air, a SiO2 layer appeared on the surface of Be-SiC fibers, but not on the surface of ordinary SiC fibers. Conclusion The reason for good mechanical properties of SiC fibers containing berylli-um under high temperature in the air may be that beryllium caused the oxidation of SiC to generate SiO2 on the surface of fibers, which prohibited inner materials from being oxidized, and meanwhile strengthened the surface of the fibers.

参考文献

[1] 王浩,王军,宋永才,简科,邵长伟.先驱体转化连续SiC纤维研究进展[J].航空制造技术,2014(06):41-44.
[2] 杜若,康宁宁.陶瓷基复合材料在高超声速飞行器热防护系统中的应用[J].飞航导弹,2010(02):80-87.
[3] 曹淑伟,谢征芳,王军,王浩,薛金根,牛加新.先驱体转化法制备含锆SiC纤维及其组成[J].硅酸盐学报,2009(01):62-67.
[4] 王亦菲,赵鹏,宋永才,冯春祥.富碳含钛碳化硅纤维的研制[J].新型炭材料,2000(02):57-60.
[5] 余煜玺 .含铝碳化硅纤维的连续化制备与研究[D].国防科学技术大学,2005.
[6] 陈志彦,王军,李效东,李文芳.连续含铁碳化硅纤维及其结构吸波材料的研制[J].复合材料学报,2007(05):72-76.
[7] 许慜 .先驱体转化法制备含硼/铝碳化硅纤维的研究[D].厦门大学,2011.
[8] 王军,陈革,宋永才,萧加余,许云书,孙颖.含镍碳化硅纤维的制备及其电磁性能Ⅰ.含镍碳化硅纤维的制备[J].功能材料,2001(01):34-36,39.
[9] 王军,陈革,宋永才,萧加余,许云书,孙颖.含镍碳化硅纤维的制备及其电磁性能Ⅱ.含镍碳化硅纤维的电磁性能[J].功能材料,2001(01):37-39.
[10] 杨大祥,宋永才,余煜玺,赵晓峰,肖平.含钇聚碳硅烷制备碳化硅纤维[J].中国有色金属学报(英文版),2012(04):879-886.
[11] 余煜玺,李效东,陈国明,曹峰,冯春祥.含铝碳化硅纤维耐高温性能[J].硅酸盐学报,2004(07):812-815.
[12] 陈思员,姜贵庆,俞继军,欧东斌.碳化硅材料被动氧化机理及转捩温度分析[J].宇航材料工艺,2009(03):21-24.
[13] 段曦东,李文芳,周珊,杜作娟,王超英,黄小忠.含铍碳化硅陶瓷先驱体聚铍碳硅烷的合成[J].功能材料,2012(12):1647-1650.
[14] 黄小忠,周珊,程勇,杜作娟,段曦东,王超英.Synthesis and ceramization of polycarbosilane containing beryllium[J].中南大学学报(英文版),2014(01):71-75.
[15] 周珊 .含铍碳化硅陶瓷的制备及其电磁性能研究[D].中南大学,2014.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%