欢迎登录材料期刊网

材料期刊网

高级检索

目的:通过调控钛基体表面的结构和特性,提高惰性钛基体表面的生物活性,改善其医用植入效果。方法采用碱热处理方法在钛基体表面构建多级孔洞结构,对改性后钛片的表面形貌、成分、结构、亲疏水性进行表征,评价钛片表面对类骨磷灰石的诱导能力。结果碱热处理使钛表面形成了多孔网状结构,孔洞包括微米级孔和200~300 nm的纳米孔,孔隙间隔介于微米至几百纳米之间。碱热处理后的钛片表面形成了含有大量羟基的氧化物层,主要成分为金红石型TiO2和碱性钛酸盐,具有极好的亲水性,接触角仅约为12o。碱热处理钛片表面的三维多孔结构对磷灰石的生长有很好的诱导作用,矿化7天后,类骨磷灰石便完全覆盖表面,14天后的矿化效果更好。结论纯钛表面通过碱热处理法构建微纳多孔结构后,具有良好的诱导羟基磷灰石形成的能力,对其生物活性有促进作用。

ABSTRACT:Objective To improve the bioactivity of the titanium surface by regulating the surface morphology and properties so as to improve the effect for medical implantation. Methods Alkali heat treatment ( AHT) was used to construct the hierarchical porous structure on the titanium surface. The surface morphology, structure, elements, and hydrophilicity of the treated titanium were characterized by a series of analytical tools. The biomimetic mineralization experiments were carried out to evaluate the hydroxyapatite formation on the treated surface in simulated body fluid ( SBF) . Results It was revealed that the hierarchical porous structure was formed after AHT, the holes included micron holes and 200~300 nm hole, the pore intervals varied from microns to hundreds of nanometers. An oxide layer containing a large number of hydroxyl groups was formed on the titanium surface after AHT. Hydrophilic of titanium surface after AHT was excellent, the contact angle was about 12. The alkaline titanate, as well as rutile TiO2 , was the main component of coating. The porous structure exhibited good apatite-inducing ability in SBF. Many bone-like apatite crystals were formed on AHT-titanium surface after 7 d immersion and the mineralization behavior exhibited even better after 14 d. Conclusion AHT-titanium with micro/nano pores exhibits the good inducibility for hydroxyapatite formation, which has a promotion effect on its biological activity.

参考文献

[1] LI D;FERGUSON S J;BEUTLER T et al.Biomechanical Comparison of the Sandblasted and Acid-etched and the Ma-chined and Acid-etched Titanium Surface for Dental Im-plants[J].Journal of Biomedical Materials Research,2002,60:325-332.
[2] 陈晓波.二氧化钛纳米材料及其能源应用[J].催化学报,2009(08):839-851.
[3] Cai KY;Rechtenbach A;Hao JY;Bossert J;Jandt KD .Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: Characterization and cell behaviour aspects[J].Biomaterials,2005(30):5960-5971.
[4] Xiong J;Li Y;Wang X .Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications.[J].Acta biomaterialia,2008(6):1963-1968.
[5] 王少鹏,李争显,杜继红.钛合金表面等离子喷涂涂层材料的研究进展[J].表面技术,2013(05):93-97,111.
[6] 黄朝,吴宇,夏海滨,王贻宁,王爱华.微波诱导羟基磷灰石/钛合金界面反应的研究[J].表面技术,2013(01):53-55,74.
[7] Jones,J.R. .Review of bioactive glass: From Hench to hybrids[J].Acta biomaterialia,2013(1):4457-4486.
[8] NIAKAN A;RAMESH S;TAN C Y et al.Characteristics of Sintered Bovine Hydroxyapatite[J].Applied Mechanics &Materials,2013,372:177-180.
[9] 谭思民,王帅星,赵晴,马刚,刘康生,高鹏.水热时间对钛合金微弧氧化膜合成羟基磷灰石的影响[J].表面技术,2014(03):20-24.
[10] Baek-Hee Lee;Young Do Kim;Ji Hoon Shin .Surface modification by alkali and heat treatments in titanium alloys[J].Journal of biomedical materials research, Part B. Applied biomaterials,2002(3):466-473.
[11] Rawlings RD;Wu JP;Boccaccini AR .Glass-ceramics: Their production from wastes-a review[J].Journal of Materials Science,2006(3):733-761.
[12] HAN Y;XU K .Photoexcited Formation of Bone Apatite-like Coatings on Micro-arc Oxidized Titanium[J].Journal of Bi-omedical Materials Research Part A,2004,71(4):608-614.
[13] 舒瑶,李全利,欧国敏,宫苹,邹敬才.壳聚糖-肝素静电自组装多层膜在钛表面进行的生物化修饰[J].中国组织工程研究与临床康复,2010(21):3832-3838.
[14] Ozasa K;Nemoto S;Li YZ;Hara M;Maeda M;Mochitate K .Contact angle and biocompatibility of sol-gel prepared TiO2 thin films for their use as semiconductor-based cell-viability sensors[J].Surface and Interface Analysis: SIA: An International Journal Devoted to the Development and Application of Techniques for the Analysis of Surfaces, Interfaces and Thin Films,2008(3/4):579-583.
[15] Ranella A;Barberoglou M;Bakogianni S;Fotakis C;Stratakis E .Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures.[J].Acta biomaterialia,2010(7):2711-2720.
[16] Buser D;Broggini N;Wieland M;Schenk RK;Denzer AJ;Cochran DL;Hoffmann B;Lussi A;Steinemann SG .Enhanced Bone Apposition to a Chemically Modified SLA Titanium Surface.[J].Journal of Dental Research: Official Publication of the International Association for Dental Research,2004(7):529-533.
[17] ELLINGSEN J E;JOHANSSON C B;WENNERBERG A et al.Improved Retention and Bone-implant Contact with Flu-oride-modified Titanium Implants[J].International Journal of Oral & Maxillofacial Implants,2004,19(5):65-66.
[18] Shalabi MM;Gortemaker A;Hof MA;Jansen JA;Creugers NH .Implant surface roughness and bone healing: a systematic review.[J].Journal of Dental Research: Official Publication of the International Association for Dental Research,2006(6):496-500.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%