欢迎登录材料期刊网

材料期刊网

高级检索

目的:研究吸波涂层因物理和化学损伤而导致的失效原因,用于评估吸波涂层的寿命,指导吸波涂层的功能结构优化,提高吸波涂层的使用寿命。方法通过高低温振动双结合、加速人工老化试验等方法和分析涂层失效前后的微观形貌、组成元素,对导致吸波涂层失效的多种因素进行试验验证。结果在固化阶段和高低温振动条件下,涂层因内应力变化导致开裂脱落;在紫外线照射和盐雾作用下,涂层因氧化和盐雾渗透导致粉化、鼓泡。结论建立了吸波涂层失效体系及失效因子,得到影响涂层实效的因素主要为:涂层厚度、附着力、致密度、有机成膜物功能键特性、吸收剂氧化活性等。在吸波涂层设计中,应采用低交联度树脂,降低因固化反应带来的内应力增加;通过减薄增韧,提高涂层的耐高低温交变和振动性能;通过设计耐腐蚀屏蔽层和在表面涂覆高耐侯保护层,提高吸波涂层在大气和介质腐蚀下的使用寿命。

ABSTRACT:Objective To study reasons of failure of absorbing coatings caused by physical and chemical damages so as to evalu-ate and improve the lifetime and guide the functional optimization of absorbing coatings. Methods A series of tests such as high-low temperature vibration and accelerated aging test, micro-topography of coatings before and after damage, and elementary analysis were taken to confirm the factors leading to failure in absorbing performance. Results During the solidification and high-low temper-ature vibration test, the performance failure was due to cracking and pealing caused by the change of internal stress. Exposed to UV and salt fog, the performance failure was due to pulverization and bubbling caused by coating oxidation and permeation of salt and fog. Conclusion According to the experiment results, the absorbing coating failure system and factors were established. The major factors that influenced the performance of coatings included coating thickness, adhesive force, density, functional groups of organic film forming substance and oxidative activity of absorbents. During the design of absorbing coatings, resin of low crosslinking de-gree should be used to reduce internal stress caused by solidification. Tolerance of high-low temperature shift and vibration can be enhanced by decreasing thickness and increasing toughness. The lifetime of coatings under atmospheric and medium corrosive con-dition was prolonged by introduction of corrosion resisting shielding layer and high weatherability protection layer.

参考文献

[1] 陈宏烨;陈江.新型材料在光电对抗中的应用[J].电光系统,2012(3):30-32.
[2] 哈恩华,黄大庆,丁鹤雁.新型轻质雷达吸波材料的应用研究及进展[J].材料工程,2006(03):55-59.
[3] 姚俊,王小强.航天用吸波材料的制备及研究进展[J].当代化工,2012(02):169-172.
[4] 黄科,冯斌,邓京兰.结构型吸波复合材料研究进展[J].高科技纤维与应用,2010(06):54-58.
[5] MOURITZ A P;BANNISTER M K;FALZON P J;et a1 .Review of Applications for Advanced Three-dimensional Fi-bertextile Composites[J].Composites Part A:Applied Sci-ence and Manufacturing,1999,30(12):1445-1461.
[6] J. L. Wojkiewicz;S. Fauveaux;N. Redon;J. L. Miane .High electromagnetic shielding effectiveness of polyaniline-polyurethane composites in the microwave band[J].International journal of applied electromagnetics and mechanics,2004(1/4):203-206.
[7] Petra Potschke;Arup R.Bhattacharyya;Andreas Janke .Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate[J].Polymer: The International Journal for the Science and Technology of Polymers,2003(26):8061-8069.
[8] FLANAGAN M P;ZIKRY M;WALL J W et al.An Experi-mental Investigation of High Velocity Impact and Penetra-tion Failure Modes in Textile Composites[J].Journal of Composite Materials,1999,33(12):1080-1103.
[9] 阿列克谢耶夫 A T.隐身技术的物理学基础[M].北京:兵器工业出版社,2002
[10] 周志飚,郭志猛,毛卫民,潘成,方鲲.宽频吸波涂层的探索[J].材料导报,2005(z2):321-323.
[11] 张泽洋,刘祥萱,张海丰,李伟,燕艳.NiFe1.98 Nd0.02 O4-Fe 双层吸波涂层设计及制备[J].表面技术,2014(4):119-123.
[12] 刘海定,曹旭东,贺文海,李济林,刘苹,蔡军.吸波涂层界面结合机理(Ⅰ):涂层力学性能影响因素分析[J].功能材料,2007(07):1045-1048.
[13] 尹应跃,魏晓红,游敏.粘涂层中的温度应力测试与分析[J].粘接,2003(04):3-5.
[14] 杨春梅,郑小玲,余海洲.环氧胶粘涂层中温度应力的有限元分析[J].三峡大学学报(自然科学版),2004(02):160-162.
[15] 张鹏;王兆华.丙烯酸树脂防腐蚀涂料及应用[M].北京:化学工业出版社,2003
[16] 彭智慧,曹茂盛,袁杰,肖钢.雷达吸波材料设计理论与方法研究进展[J].航空材料学报,2003(03):58-63.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%