欢迎登录材料期刊网

材料期刊网

高级检索

低地球轨道( Low Earth Orbit,LEO)中,强氧化性、大通量、高能量的原子氧( atomic oxygen,AO)会对航天器表面材料造成极大的破坏. 特别是聚合物材料,受AO侵蚀后易氧化降解,造成光学、电学和力学等性能退化,影响航天器的正常工作并缩短其使用寿命. 从LEO环境中抗AO侵蚀材料研究的理论基础出发,评述了无机、有机及复合涂层的制备方法和各自的优缺点,目前存在的问题,以及聚合物基体表面涂层开裂与界面剥离失效机理研究的重要性. 从目前的研究可以看出,具有自我修复功能的有机或无机功能涂层,以及与原子氧反应时能产生具有保护性能的稳定氧化物或其他稳定表面结构的涂层,是今后的研究方向. 应将聚合物基体和涂层作为整体进行研究,充分研究涂层与基体间的界面效应和失效机理. 在抗AO新材料研究领域,以聚酰亚胺材料为例,简述了含磷、含硅、含锆聚酰亚胺的研究进展,以及从基础研究到工程化应用还亟待解决的关键问题和工艺技术. 希望该综述为发展新的先进防护涂层和新材料体系提供一些可借鉴的研究思路.

In the low earth orbit ( LEO) , the atomic oxygen( AO) with strong oxidizing ability, large flux and high energy is considered to cause severe hazards to the spacecraft exterior materials. In particular, the interaction of AO with polymer materials results in severe damages of the materials, such as irreversible degradation of optical, electric and mechanical properties, leadingto negative influence on the normal operation and shortened served life of the spacecraft. Base on the theoretical basis for study on AO erosion resistant materials in LEO environment, this paper reviewed the preparation methods of inorganic, organic and compo-site coatings, summarized their advantages and disadvantages and the existing problems, and pointed out the importance to study the mechanisms of coating cracking and interfacial debonding failure. Future research should be focused on self-healing organic or inorganic coatings and the coatings reacted with AO to produce stable oxides or stable surface structure. The polymer matrix and coatings should be taken as a whole to study, and the interfacial effect and failure mechanism between the coatings and matrix should be well studied. In the research field of AO-resistant new materials, using polyimide as an example, the research progresses of phosphorus-containing polyimide, silicon-containing polyimide and zirconium-containing polyimide were introduced, as well as the key problems and technology to be solved in the transformation from basic research to engineering application. It was hoped that this review could provide some research ideas for the development of new advanced protective coatings and new materials.

参考文献

[1] Zhao Wei;Li Weiping;Liu Huicong;Zhu Liqun.Erosion of a Polyimide Material Exposed to Simulated Atomic Oxygen Environment[J].中国航空学报(英文版),2010(02):268-273.
[2] WANG Haidou;MA Guozheng;XU Binshi;XING Zhiguo;LI Guolu;ZHANG Sen.The Erosion Effect of Kapton Film in a Ground-based Atomic Oxygen Irradiation Simulator[J].武汉理工大学学报(材料科学版)(英文版),2014(06):1277-1282.
[3] 宋密密 .聚酰亚胺的原子氧侵蚀效应与防护技术研究[D].江西科技师范大学,2012.
[4] 姜海富;李胜刚;田修波;柴丽华;秦玮;张永泰.金属铜原子氧效应研究[J].装备环境工程,2015(3):70-74.
[5] 翟睿琼;姜利祥;田东波;刘宇明;姜海富.国外热塑性树脂基复合材料低轨原子氧环境效应研究进展[J].装备环境工程,2015(3):64-69.
[6] K. B. Vernigorov;A. Yu. Alent'ev;I. B. Meshkov;A. M. Muzafarov;E. N. Voronina;L. S. Novikov;V. N. Chernik.Use of Hyperbranched Polyethoxysiloxane to Improve the Resistance of Thermoplastic Polyimide Coatings to Atomic Oxygen Environment[J].Inorganic materials: applied research,20122(2):81-87.
[7] 李中华,赵琳,郑阔海.低轨道航天器舱外材料或器件原子氧防护技术研究[C].第三届空间材料及其应用技术学术交流会论文集,2011:6-11.
[8] 褚勇 .原子氧对高分子材料的侵蚀效应分析及其防护研究[D].烟台大学,2013.
[9] Sui, Xin;Gao, Longcheng;Yin, Penggang.Shielding Kevlar fibers from atomic oxygen erosion via layer-by-layer assembly of nanocomposites[J].Polymer Degradation and Stability,2014:23-26.
[10] Verker, R.;Atar, N.;Quero, F.;Eichhorn, S.J.;Grossman, E..Tensile stress effect on the macromolecular orientation and erosion mechanism of an atomic oxygen irradiated polyimide[J].Polymer Degradation and Stability,20135(5):997-1005.
[11] Longfei Hu;Meishuan Li;Caihong Xu;Yongming Luo.Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,20113(3):1063-1068.
[12] L. F. Hu;M. S. Li;J. J. Xu;Ziqi Sun;Y. C. Zhou.Vacuum Ultraviolet/Atomic Oxygen Erosion Resistance of Amorphous Si_(0.26)C_(0.43)N_(0.31) Coating[J].Journal of spacecraft and rockets,20113(3):507-512.
[13] 沈自才;邱家稳;丁义刚;刘宇明;赵春晴.航天器空间多因素环境协同效应研究[J].中国空间科学技术,2012(5):54-60.
[14] Lv, Mei;Wang, Qihua;Wang, Tingmei;Liang, Yongmin.Effects of atomic oxygen exposure on the tribological performance of ZrO2-reinforced polyimide nanocomposites for low earth orbit space applications[J].Composites, Part B. Engineering,2015Aug.(Aug.):215-222.
[15] 翟睿琼;姜海富;田东波;姜利祥;杨东升;安晶.空间站原子氧环境仿真研究[J].装备环境工程,2014(3):35-39.
[16] Sharon K.R. Miller;Bruce Banks.Degradation of Spacecraft Materials in the Space Environment[J].MRS bulletin,20101(1):20-24.
[17] 赵琳;李中华;郑阔海.原子氧防护涂层技术研究[J].真空与低温,2011(4):187-192,229.
[18] 孙九立;张秋禹;刘金华;侯永刚.低地球轨道环境中原子氧对空间材料的侵蚀及防护方法[J].腐蚀与防护,2010(8):631-635.
[19] 赵云峰.航天特种高分子材料研究与应用进展[J].中国材料进展,2013(04):217-228.
[20] 柏春燕 .新型含磷含氟聚酰亚胺的合成与性能研究[D].天津科技大学,2010.
[21] Ming Hu;Xiaoming Gao;Jiayi Sun;Lijun Weng;Feng Zhou;Weimin Liu.The effects of nanoscaled amorphous Si and SiN_x protective layers on the atomic oxygen resistant and tribological properties of Ag film[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,201215(15):5683-5688.
[22] 孙九立;张秋禹;张军平;王雯雯.有机硅改性聚酰亚胺复合膜的抗原子氧性能[J].精细化工,2011(5):433-437.
[23] 赵伟;李卫平;刘慧丛;朱立群.氨丙基倍半硅氧烷/有机硅杂化涂层抗原子氧侵蚀[J].复合材料学报,2010(4):106-110.
[24] 刘一志 .POSS杂化PVDF复合材料的制备表征与抗原子氧侵蚀分析[D].哈尔滨工业大学,2013.
[25] Seyedjamali, H.;Pirisedigh, A..Synthesis and morphology of new functional polyimide/titania nano hybrid materials[J].Journal of Materials Science,201120(20):6744-6750.
[26] Gotlib-Vainstein, Katya;Gouzman, Irina;Girshevitz, Olga;Bolker, Asaf;Atar, Nurit;Grossman, Eitan;Sukenik, Chaim N..Liquid Phase Deposition of a Space-Durable, Antistatic SnO2 Coating on Kapton[J].ACS applied materials & interfaces,20156(6):3539-3546.
[27] 李涛;姜利祥;刘阳;刘国青.航天器迎风面不同位置原子氧掏蚀效应的数值模拟研究[J].航天器环境工程,2008(4):315-318.
[28] E. Grossman;I. Gouzman.Space environment effects on polymers in low earth orbit[J].Nuclear Instruments and Methods in Physics Research, Section B. Beam Interactions with Materials and Atoms,20030(0):48-57.
[29] 胡龙飞,李美栓,徐彩虹,罗永明,周延春.一种聚硅氮烷涂层抗原子氧/紫外损伤性能研究[C].中国空间科学学会空间材料专业委员会2009学术交流会论文集,2009:10-15.
[30] 贺金梅;赵丹;郑楠;黄玉东.航天材料的抗原子氧防护技术研究进展[J].现代化工,2013(8):21-24,26.
[31] 王丹;魏强;刘海;刘圣贤.空间环境防护型薄膜评述[J].材料导报,2011(9):28-32.
[32] 郑阔海;杨生胜;李中华;王敬宜;赵琳.硅氧烷原子氧防护膜工艺及防护性能研究[J].航天器环境工程,2010(6):751-755.
[33] 王静;朱立群;李卫平;陈贻炽.有机硅微胶囊-有机硅树脂复合涂层对空间Kapton的原子氧防护[J].复合材料学报,2009(4):36-40.
[34] 多树旺,宋密密,刘庭芝,罗英,李美栓,周延春.有机硅/二氧化硅杂化涂层抗原子氧侵蚀性能研究[C].第十六届全国高技术陶瓷学术年会暨景德镇高技术陶瓷高层论坛论文集,2010:488-491.
[35] David P. Dworak;Bruce A. Banks;Christina A. Karniotis;Mark D. Soucek.Evaluation of Protective Silicone/Siloxane Coatings in Simulated Low-Earth-Orbit Environment[J].Journal of spacecraft and rockets,20062(2):393-401.
[36] Yongxian Huang;Xiubo Tian;Shixiong Lv;Shiqin Yang;R.K.Y. Fu;Paul K. Chu;Jinsong Leng;Yao Li.An undercutting model of atomic oxygen for multilayer silica/alumina films fabricated by plasma immersion implantation and deposition on polyimide[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,201121(21):9158-9163.
[37] N. M. Belomoina;E. G. Bulycheva;A. L. Rusanov.New Monomers with Trifluoromethyl and Phenylphosphine Oxide Substituents for Polynaphthylimides and Polyperyleneimides[J].Doklady Chemistry,20111(1):248-252.
[38] Dever JA;Miller SK;Sechkar EA;Wittberg TN.Space environment exposure of polymer films on the materials international space station experiment: Results from MISSE 1 and MISSE 2[J].High performance polymers,20084/5(4/5):371-387.
[39] Gilman JW.;Lichtenhan JD.;Schlitzer DS..LOW EARTH ORBIT RESISTANT SILOXANE COPOLYMERS[J].Journal of Applied Polymer Science,19964(4):591-596.
[40] Gonzalez RI.;Hoflund GB.;Phillips SH..In situ oxygen-atom erosion study of polyhedral oligomeric silsesquioxane-siloxane copolymer[J].Journal of spacecraft and rockets,20004(4):463-467.
[41] Verker R;Grossman E;Gouzman I;Eliaz N.POSS-polyimide nanocomposite films: Simulated hypervelocity space debris and atomic oxygen effects[J].High performance polymers,20084/5(4/5):475-491.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%