目的:减小杂散电流对南朗段天然气管道的干扰,消除杂散电流腐蚀隐患。方法利用沿线阴极保护电位测试、SCM检测等技术对南朗段管道的杂散电流干扰情况进行检测,并根据检测结果实施排流设计与改造。在009—019测试桩中设计6个排流点,用固态去耦合器排流技术实施排流改造。改造完成后,对排流效果进行验证。结果检测表明,杂散电流最大干扰值达16.839 V,杂散电流密度达393 A/m2,干扰长度为8 km。杂散电流干扰来源于电气化铁路,在铁路运行时间段存在杂散电流干扰,在铁路停运时间段无杂散电流干扰。改造完成后,杂散电流干扰电压降至了4V以下。结论该排流技术的应用有效减小了南朗段埋地管道的杂散电流干扰,使其达到了国家规定标准,消除了杂散电流腐蚀的隐患,保障了南朗段天然气管线的安全运行。杂散电流干扰的检测与排流技术可以用于消除铁路等对埋地管道杂散电流腐蚀的影响,对受到新建带电结构影响的管道的防护工作具有示范作用。
Objective To reduce the interference of stray current on natural gas pipeline of Nanlang segment, and eliminate the stray current corrosion risks. Methods Detection of stray current interference on natural gas pipeline of Nanlang segment was con-ducted by cathodic protection potential test and SCM detection technology. According to the test results, discharge of stray current was designed and transformed. Six discharge points were designed in the 009—019 test pile, and the drainage technology was im-plemented using the solid state decoupling device. After the completion of the transformation, the effectiveness of the implementa-tion was verified. Results The detection result showed that the maximum disturbance of stray current was 16. 839 V, the stray cur-rent density was 393 A/m2 , and the interference length was 8 km. The stray current interference came from the electrified railway. There was stray current interference during the railway running time, and no stray current interference during the railway outage time. After the transformation was completed, the stray current interference voltage dropped to below 4 V. Conclusion The practi-cal application of the drainage technology effectively reduced the stray current interference on natural gas pipeline of Nanlang seg-ment, and the national standard was attained. The risk of the stray current corrosion was eliminated, ensuring the safety operation of natural gas pipeline of Nanlang segment. The detection and drainage technology of stray current interference could be used to e-liminate the influence of railway on the stray current corrosion of the buried pipeline. and is of demonstration significance for the protection of pipelines affected by the newly built charged structure.
参考文献
[1] | 刘军.埋地管道杂散电流干扰检测与治理[J].化学工程与装备,2010(11):78-80. |
[2] | 唐永祥;宋生奎;朱坤锋.油气管道的杂散电流腐蚀防护措施[J].石油化工建设,2007(4):42-44. |
[3] | 曹阿林;朱庆军;侯保荣;张胜涛.油气管道的杂散电流腐蚀与防护[J].煤气与热力,2009(3):32-35. |
[4] | 高博;申龙涉;孟祥谦;闫陵江;韩海仓;马立新.油气管道直流杂散电流的腐蚀与防护[J].管道技术与设备,2010(4):41-43. |
[5] | 高辉;何仁洋;孟涛;杨永;石秀山.埋地钢质管道杂散电流测试与评价[J].石油化工腐蚀与防护,2009(6):34-35,59. |
[6] | 岳宏波.采取有效措施防护地铁杂散电流危害[J].中国高新技术企业,2009(01):189-190. |
[7] | 张建昌;许忠伟;冉小俊.埋地钢制管道基于SCM检测仪的杂散电流测试与评价[J].石油化工应用,2010(9):86-88. |
[8] | 陈志光;秦朝葵;计雪松.上海轨道交通二号线杂散电流测试分析[J].腐蚀与防护,2008(6):344-347. |
[9] | 王华;陈胜利;朱庆军;孙颖;兰志刚;宋积文;王在峰.广珠轻轨对南朗段天然气管道杂散电流干扰测试与分析[J].全面腐蚀控制,2012(3):40-43. |
[10] | 滕延平;张丰;赵晋云;蒋国辉;隋溪;周兴涛;韩兴平.杂散电流干扰下管道密间隔电位检测数据处理方法[J].管道技术与设备,2009(4):29-31. |
[11] | 董华清;王亚平;王家庆;郭智君;梅学.钟市-荆门输油管道杂散电流干扰测试与排除[J].腐蚀与防护,2008(11):698-699,716. |
[12] | A. Lin Cao;Qing Jun Zhu;Sheng Tao Zhang;Bao Rong Hou.BP neural network predictive model for stray current density of a buried metallic pipeline[J].Anti-Corrosion Methods and Materials,20105(5):234-237. |
[13] | 李自力;孙云峰;陈绍凯;刘静;鲁彦伯.交流电气化铁路杂散电流对埋地管道电位影响规律[J].腐蚀与防护,2011(3):177-181. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%