欢迎登录材料期刊网

材料期刊网

高级检索

目的:提高YSZ/( Ni,Al)复合涂层与基体的结合强度和抗高温氧化性。方法采用电泳沉积的方法,在Inconel 600高温合金表面上沉积YSZ/( Ni,Al)复合涂层和掺杂稀土Gd2 O3-YSZ/( Ni,Al)(简称G-YSZ/( Al,Ni))复合涂层,后进行真空烧结,然后对制备好的热障复合涂层进行划痕实验和等温循环氧化实验。通过对样品进行等温循环氧化实验,获取不同氧化时间段的复合涂层样品,并采用SEM和XRD对复合涂层组织和形貌进行分析。结果在1100℃等温氧化过程中,未掺杂稀土元素的氧化增重速率为0.0057 mg/mm2,而掺杂钆元素的氧化速率为0.0049 mg/mm2,氧化增重速率比未掺杂稀土YSZ/( Ni,Al)复合涂层的低。 G-YSZ/( Ni,Al)热障复合涂层在等温氧化过程中颗粒长大较小、裂纹少、表面更加致密。真空烧结后的YSZ/(Al,Ni)复合涂层和G-YSZ/(Al,Ni)复合涂层与基体的结合强度约为4.0 N,氧化100 h后,掺杂稀土的G-YSZ/(Al,Ni)复合涂层结合强度为3.5 N,未掺杂稀土的YSZ/(Al,Ni)复合涂层与基体的结合强度为2.6 N。 G-YSZ/(Ni,Al)热障复合涂层中存在Gd2Zr2O7相和稳定的NiAl2O4相,Gd2 Zr2 O7相具有良好的稳定性以及耐高温氧化。结论掺杂稀土氧化钆的G-YSZ/( Al,Ni)涂层的抗高温氧化性能显著提高。在等温氧化过程中,掺杂稀土元素的G-YSZ/( Al,Ni)复合涂层,其颗粒趋向于均匀化,裂纹明显变少,使得涂层更加致密,表面更加平整。等温氧化100 h后,掺杂了稀土氧化钆的G-YSZ/( Al,Ni)复合涂层基体之间具有更好的结合力,抗剥落性和服役寿命较好。

ABSTRACT:Objective To improve the high-temperature oxidation resistance and adhesion strength of YSZ/( Ni,Al) composite coatings. Methods YSZ/( Ni,Al) composite coatings were deposited on Inconel 600 superalloy without and with rare earth doped Gd2 O3( G-YSZ/( Al,Ni) ) using the electrophoretic deposition ( EPD) technique, followed by vacuum sintering method. Then the thermal barrier composite coatings prepared were tested by the scratching experiment and isothermal cyclic oxidation experiment. By performing isothermal cyclic oxidation experiment, composite coatings samples of different oxidation period were obtained and the microstructure and morphology of the composite coating were analyzed by means of SEM and XRD. Results In the process of isothermal oxidation in air at 1100 ℃, YSZ/( Ni,Al) and G-YSZ/( Al,Ni) composite coating samples had a rate of oxidation weight gain of 0. 0057 mg/mm2 and 0. 0049 mg/mm2 , respectively. The rate of rare earth doped coating samples was lower than that of the YSZ/( Ni,Al) composite coatings without rare earth. During the isothermal oxidation process, G-YSZ/( Al,Ni) compos-ite coatings had less growth of grain, fewer cracks and denser surface. After vacuum sintering for 2 h, the adhesion strength of G-YSZ/(Al,Ni) and YSZ/(Ni,Al) was both about 4. 0 N, while the adhesion strength of G-YSZ/(Al,Ni) and YSZ/(Ni,Al) af-ter isothermal oxidation in air at 1100 ℃ for 100 h was 3. 5 N and 2. 6 N, respectively. There were Gd2 Zr2 O7 and stable NiAl2 O4 phases in G-YSZ/( Ni,Al) composite coatings as revealed by XRD analysis, and the Gd2 Zr2 O7 phase had a good stability and re-sistance to high-temperature oxidation. Conclusion The high-temperature oxidation resistance of YSZ/( Al,Ni) composite coatings was significantly improved by doping of the rare earth Gd2 O3 . In the process of isothermal oxidation, the particles of the G-YSZ/( Al,Ni) composite coating doped with rare earth tended to be homogenized and the amount of cracks was obviously reduced, mak-ing the surface of coating denser and smoother. After isothermal oxidation in air at 1100 ℃, the G-YSZ/( Al,Ni) composite coat-ing had a better adhesion strength with the substrate, and the spalling resistance and service life were also better.

参考文献

[1] P. J. R. Smith;M. P. Taylor;H. E. Evans.The Oxidation and Interdiffusion of a Chromia Forming Multilayered TBC System[J].Oxidation of Metals,20141/2(1/2):47-55.
[2] L. Chirivi;J. R. Nicholls.Influence of Surface Finish on the Cyclic Oxidation Lifetime of an EB-PVD TBC, Deposited on PtAl and Pt-diffused Bondcoats[J].Oxidation of Metals,20141/2(1/2):17-31.
[3] 张红松;刘振启;关绍康.等离子喷涂纳米与微米YSZ热障涂层的孔隙结构比较[J].表面技术,2010(5):4-7.
[4] 任鑫.等离子喷涂YSZ热障涂层的热腐蚀行为研究[J].表面技术,2009(06):27-28,59.
[5] 柳彦博;王全胜;王富耻;马壮;李东荣.等离子喷涂纳米氧化锆涂层组织结构研究[J].表面技术,2005(2):24-26.
[6] 倪军;刘榕芳;肖秀峰.电泳沉积HA/Ti复合涂层的结合强度和热稳定性[J].稀有金属材料与工程,2006(1):119-122.
[7] Kan, YM;Li, SL;Wang, PL;Zhang, GJ;Van der Biest, O;Vleugels, J.Preparation and conductivity of Yb2O3-Y2O3 and Gd2O3-Y2O3 co-doped zirconia ceramics[J].Solid state ionics,200827/32(27/32):1531-1534.
[8] Mohamed N.Rahaman;Jacob R. Gross;Rollie E. Button.Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO_2-Gd_2O_3 compositions for potential thermal barrier coating applications[J].Acta materialia,20066(6):1615-1621.
[9] Noor-A-Alam, M.;Choudhuri, A.R.;Ramana, C.V..Effect of composition on the growth and microstructure of hafnia-zirconia based coatings[J].Surface & Coatings Technology,20117(7):1628-1633.
[10] Ramachandran C.S.;Balasubramanian V.;Ananthapadmanabhan P.V..Influence of the intermixed interfacial layers on the thermal cycling behaviour of atmospheric plasma sprayed lanthanum zirconate based coatings[J].CERAMICS INTERNATIONAL,20125(5):4081-4096.
[11] W. Ma;D. Mack;J. Malzbender.Yb_2O_3 and Gd_2O_3 doped strontium zirconate for thermal barrier coatings[J].Journal of the European Ceramic Society,200816(16):3071-3081.
[12] 潘应君;许伯藩;张细菊.La2O3对激光熔覆TiC/Ni基复合涂层的影响[J].稀土,2003(4):49-52.
[13] 赵涛;蔡珣;王顺兴;郑世安.CeO2对镍基金属陶瓷复合层组织和耐腐蚀性能的影响[J].金属热处理,2001(2):1-3.
[14] 刘保福;詹肇麟;翟志清.稀土氧化物陶瓷材料在热障涂层上的应用现状[J].表面技术,2007(2):61-64.
[15] Leckie RM;Kramer S;Ruhle M;Levi CG.Thermochemical compatibility between alumina and ZrO2-GdO3/2 thermal barrier coatings[J].Acta materialia,200511(11):3281-3292.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%