欢迎登录材料期刊网

材料期刊网

高级检索

目的:研究不同等离子体还原介质和还原时间对氧化铜还原的影响。方法采用等离子焰流扫描试样,应用扫描电镜观察还原后试样的表面微观形貌,通过X射线衍射仪分析试样处理前后表面相成分的变化。结果采用N2+热氨为气体介质,其还原产物为Cu4 O3和Cu3 O,相对于其他气体介质得到的还原产物Cu2 O,能将Cu2+还原至更低的价态。还原时间为40 s时,主要还原产物为Cu3 O,其氧含量低于CuO,随着时间延长,亚稳相Cu3 O逐渐转变成较稳定的Cu2 O;当还原时间为100 s时,析出Cu单质。结论 N2+热氨是还原性较强的气体介质。氧化铜中铜离子价态随还原时间增加而降低,同时伴随亚稳定相Cu3 O向Cu2 O转变现象。还原过程中高能电子对CuO颗粒有加热熔融作用,激发态的活性粒子发挥主要的还原作用。

Objective To investigate the influence of different plasma gas and reduction time on the reduction process of CuO. Methods Plasma jet was used to scan the surface of samples. The microstructure after reduction and the change in phase composi-tion before and after reduction were studied by SEM and XRD analysis after the reduction process. Results The reduction products consisted of Cu4 O3 and Cu3 O when using N2+ decomposed NH3 , the valence state of which was lower than that of the reduction product obtained by other gas media, all of which gave the reduction product of Cu2 O. The results showed that the main reduction product consisted of Cu3 O at 40 s, the valence state of which was lower than that of CuO. Metastable phase Cu3 O was gradually transformed into the relatively stable phase Cu2 O as time went by. With extending reduction time, Cu was segregated as the reduc-tion time reached 100 s. Conclusion N2+decomposed NH3 had better reducibility than other gas media. With increasing reduction time, copper ion valence decreased and the Cu3 O phase was transformed from metastable state into a relatively stable state. During the reduction process, the high energy electrons had the heating effect on the CuO particles, and the active particles in the excited state played a major role in the reduction.

参考文献

[1] 赵玲利;王守国.常压冷等离子体清洗技术在微电子工业中的应用[J].清洗世界,2005(4):33-36.
[2] 张雪;张晓菲;王立言;张翀;陈韵亿;常海波;李和平;邢新会.常压室温等离子体生物诱变育种及其应用研究进展[J].化工学报,2014(7):2676-2684.
[3] Ideno T;Ichiki T.Maskless etching of microstructures using a scanning microplasma etcher[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,20060(0):235-238.
[4] 崔淑玲;刘金树.低温等离子体在材料表面改性中的应用[J].河北工业科技,2004(6):56-58,64.
[5] Goree J.;Liu B.;Drake D.;Stoffels E..Killing of S. mutans Bacteria Using a Plasma Needle at Atmospheric Pressure[J].IEEE Transactions on Plasma Science,20064(4):1317-1324.
[6] Kim JooSung;Lee EunJung;Choi EunHa;Kim YunJi.Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment.[J].Innovative Food Science & Emerging Technologies,2014:124-130.
[7] Sawada Y.;Kogoma M.;Kawase M.;Hashimoto K.;Tamaru H..THE REDUCTION OF COPPER OXIDE THIN FILMS WITH HYDROGEN PLASMA GENERATED BY AN ATMOSPHERIC-PRESSURE GLOW DISCHARGE[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,199610(10):2539-2544.
[8] Satomi Tajima;Shouichi Tsuchiya;Masashi Matsumori;Shigeki Nakatsuka;Takanori Ichiki.High-rate reduction of copper oxide using atmospheric-pressure inductively coupled plasma microjets[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,201120(20):6773-6777.
[9] 谢维杰 .光谱解析低温等离子体中O<,2>,N<,2>,CO<,2>的活性中间体及其环境化学行为[D].上海交通大学,2008.
[10] 张玉文;丁伟中;郭曙强;徐匡迪.等离子态氢还原金属氧化物初探[J].中国有色金属学报,2004(2):317-321.
[11] 白柳杨;袁方利;张海宝;金化成;李晋林.氢等离子体还原制备纳米镍粉/铜粉研究[J].电子元件与材料,2011(10):44-46,59.
[12] 张玉文;丁伟中;鲁雄刚.直流脉冲辉光冷等离子体氢还原金属氧化物的特性研究[J].上海金属,2009(4):15-20.
[13] DI Lanbo;ZHANG Xiuling;XU Zhijian.Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J].等离子体科学和技术(英文版),2014(01):41-44.
[14] 卢振华 .单晶铜氧化行为的研究[D].兰州理工大学,2010.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%