欢迎登录材料期刊网

材料期刊网

高级检索

铝电解工业越来越多的采用石墨阴极,石墨阴极具有良好的导电性能,但石墨不被铝液湿润且和铝液形成Al4 C3,导致铝电解槽运行寿命短.可湿润TiB2涂层阴极因节能和延长槽寿命能够给铝电解工业带来显著效益.等离子喷涂是一种高效、灵活的沉积涂层的方法 ,能够在形状复杂或大表面积的基体上沉积金属间化合物、陶瓷或复合材料,涂层厚度可从数微米到数毫米.等离子喷涂制备可湿润性TiB2涂层阴极是可行有效的方法 ,本文评述了等离子喷涂制备可湿润TiB2阴极涂层的研究进展,简述了等离子喷涂工艺受到的影响因素(包括粉末性质、基体表面形貌和焰流性质)和涂层与基体材料结合的机制(包括机械结合、冶金结合和物理结合),分析和讨论了TiB2粉末制备、基体预处理、等离子喷涂工艺参数、涂层显微结构和性能等.最后,指出了等离子喷涂制备可湿润性TiB2涂层阴极工艺将来研究需要解决的几个关键问题.

Graphite is used increasingly as cathode for aluminium electrolysis cell, which shows a better electrical conductivity and less energy loss in the process. Liquid aluminum does not wet graphite, and react with graphite to form aluminium carbide ( Al4 C3 ) , which is the cause that limits the lifespan of cathodes. The TiB2 coating of wettable cathodes has the potential to give e-normous benefits to the aluminum electrolysis industry in terms of energy cost saving and prolonged cell life. Plasma spraying is a cost-effective and highly flexible method for depositing coatings including intermetallics, ceramics and composites with a thickness from several micrometers to millimeters on substrates of complicated shapes and with a large area. Plasma Sprayed TiB2 coating of wettable cathodes is a known technique. This review covers the development of plasma sprayed TiB2 coatings of wettable cathodes for aluminum electrolysis. This article outlined the influencing factors of plasma spraying ( including the powder properties, the sur-face morphology of substrate material and the flame flow properties), and the binding mechanism between coatings materials and substrate materials (including mechanical bonding, metallurgical bonding and physical bonding). The TiB2 powder preparation, pretreatment of carbon blocks and plasma spraying process were reviewed, and then the microstructure and properties of plasma spraying TiB2 coatings were discussed. At the end, some key problems in the future researches of plasma spraying TiB2 coating of wettable cathodes were also outlined.

参考文献

[1] 刘业翔.铝电解惰性阳极与可湿润性阴极的研究与开发进展[J].轻金属,2001(05):26-29.
[2] Jie Li;Xiao-jun Lu;Yan-qing Lai.Research Progress in TiB_2 Wettable Cathode for Aluminum Reduction[J].JOM,20088(8):32-37.
[3] B. Basu;G. B. Raju;A. K. Suri.Processing and properties of monolithic TiB_2 based materials[J].International Materials Reviews,20066(6):352-374.
[4] Makyta M.;Haarberg GM.;Thonstad J.;Danek V..ELECTRODEPOSITION OF TITANIUM DIBORIDE FROM FUSED SALTS[J].Journal of Applied Electrochemistry,19963(3):319-324.
[5] 李冰;邱竹贤;李军;叶以富;赵祖欣.在石墨基体上电沉积TiB2镀层的研究[J].稀有金属材料与工程,2004(7):764-767.
[6] 孙彩云;何庆兵;李立;张隆平;易同斌;吴护林.化学气相沉积法制备TiB2涂层工艺的研究[J].表面技术,2013(1):81-84.
[7] Fauchais P;Montavon G;Vardelle M;Cedelle J.Developments in direct current plasma spraying[J].Surface & Coatings Technology,20065(5):1908-1921.
[8] Fauchais, P.;Vardelle, A..Innovative and emerging processes in plasma spraying: From micro- to nano-structured coatings[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,201119(19):194011-1-194011-14.
[9] 杨洪伟;栾伟玲;涂善东.等离子喷涂技术的新进展[J].表面技术,2005(6):7-10.
[10] 邢亚哲;王强;李文鹏;马旭.等离子喷涂灰铸铁涂层的研究进展[J].表面技术,2016(2):90-96.
[11] Cedelle J;Vardelle M;Fauchais P.Influence of stainless steel substrate preheating on surface topography and on millimeter- and micrometer-sized splat formation[J].Surface & Coatings Technology,20063/4(3/4):1373-1382.
[12] M. Fukumoto;K. Yang;K. Tanaka;T. Usami;T. Yasui;M. Yamada.Effect of Substrate Temperature and Ambient Pressure on Heat Transfer at Interface Between Molten Droplet and Substrate Surface[J].Journal of Thermal Spray Technology,20111/2(1/2):48-58.
[13] M. P. Planche;R. Bolot;C. Coddet.In-flight characteristics of plasma sprayed alumina particles: measurements, modeling, and comparison[J].Journal of Thermal Spray Technology,20031(1):101-111.
[14] J. F. Bisson;B. Gauthier;C. Moreau.Effect of plasma fluctuations on in-flight particle parameters[J].Journal of Thermal Spray Technology,20031(1):38-43.
[15] J. F. Bisson;C. Moreau.Effect of direct-current plasma fluctuations on in-flight particle parameters: Part II[J].Journal of Thermal Spray Technology,20032(2):258-264.
[16] Mitchell R. Dorfman.Thermal spray basics[J].Advanced Materials & Processes,20027(7):47-50.
[17] Junhu Liu;Bart Blanpain;Patrick Wollants.A XPS Study of Atmospheric Plasma Sprayed TiB_2 Coatings[J].Key engineering materials,2008p.2(p.2):1347-1350.
[18] Cheng K;Chen X;Wang HX;Pan WX.Modeling study of shrouding gas effects on a laminar argon plasma jet impinging upon a flat substrate in air surroundings[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,20060(0):724-728.
[19] Syed AA;Denoirjean A;Fauchais P;Labbe JC.On the oxidation of stainless steel particles in the plasma jet[J].Surface & Coatings Technology,200614/15(14/15):4368-4382.
[20] 张林伟 .大气等离子喷涂粒子氧化及其对热障涂层性能影响研究[D].北京工业大学,2009.
[21] 张林伟;魏琪;李辉;栗卓新.热喷涂粒子氧化机理分析及其保护方法概述[J].材料工程,2009(6):78-82.
[22] Deshpande S;Sampath S;Zhang H.Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings - Case study for Ni-Al[J].Surface & Coatings Technology,200618/19(18/19):5395-5406.
[23] Sobczak N;Kudyba A;Nowak R;Radziwill W;Pietrzak K.Factors affecting wettability and bond strength of solder joint couples[J].Pure and Applied Chemistry,200710(10):1755-1769.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%