欢迎登录材料期刊网

材料期刊网

高级检索

作为一种应用十分广泛的金属材料表面后处理工艺,氩弧重熔技术具有均匀金属材料的表层组织、减缓焊接接头的残余应力、改善金属基体与强化层之间的界面结合状态等优点,在一定程度上可以提高金属及表面强化层的性能.综述了氩弧重熔工艺的原理、特点及工艺参数(重熔电流、移动速度、氩气流量和电弧长度)对重熔效果的影响,着重介绍了氩弧重熔技术在金属表面(铸铁、钢和合金)及其表面强化层(涂层、热浸镀层、渗层和堆焊层)后处理过程中的应用进展.最后探讨了金属及表面强化层氩弧重熔工艺的发展方向:1)强化内在机理研究及界面反应状态研究;2)完善快速凝固理论和界面结构研究;3)提升强化层的结构设计与氩弧重熔工艺条件的契合度;4)加强相关的数值模拟研究.

As a kind of widely used post-treatment process applied to the metal surface, argon arc remelting technology has many advantages, such as improving the microstructure on the surface of metal material, relieving the residual stress of welded joint and modifying the integrated state of interface between the metallic substrate and the strengthening layer, which promotes the com-bination properties of metal and surface strengthened layers to some degree. The principle, characteristics of argon arc remelting technology and the effects of process parameters, including remelting current, movement speed, flow rate of argon gas and arc length, on the result of remelting were introduced. Meanwhile, the applications of argon arc remelting technology in follow-up treat-ment methods of metals (including cast iron, steel and alloy), and surface strengthened layers (including coating, hot-dipped coating, layer and welding cladding) were highlighted. Furthermore, it also pointed out the development directions of metal and surface strengthened layers by argon arc remelting in the future. Firstly, the related research of the internal mechanism and inter-face reaction remains to be strengthened;secondly, the rapid solidification theory and the research related to interface structure re-main to be perfected;thirdly, the degree of matching between the structural design of strengthening layer and the process conditions of argon arc remelting remains to be promoted;fourthly, the relevant numerical simulation study also remains to be strengthened.

参考文献

[1] 殷宗莲;周学梅;王俊芳.吸波涂层失效因素研究[J].表面技术,2015(7):76-80,102.
[2] 张红园;杨延清;罗贤.SiCf/Ti-6Al-4V复合材料叶环应力及超转失效的有限元分析[J].中国有色金属学报(英文版),2015(1):261-270.
[3] 林丽;李国禄;王海斗;康嘉杰.基体表面异质材料滚动接触疲劳性能与失效机理的研究进展[J].表面技术,2015(5):111-117,128.
[4] J. Mateos;J. M. Cuetos;R. Vijande;E. Fernandez.Tribological properties of plasma sprayed and laser remelted 75/25 Cr{sub}3C{sub}2/NiCr coatings[J].Tribology International,20015(5):345-351.
[5] Cheng FT.;Lo KH.;Man HC..NiTi cladding on stainless steel by TIG surfacing process Part I. Cavitation erosion behavior[J].Surface & Coatings Technology,20032/3(2/3):308-315.
[6] 胡卫强;刘宗德;王永田;夏兴祥.快冷熔覆法原位合成大厚度铁基非晶复合涂层的研究[J].物理学报,2011(2):565-570.
[7] 马壮;陶莹;王倪;周鹏;李智超.渗层重熔工艺研究进展[J].金属热处理,2014(4):7-10.
[8] 柴彤彤;李志勇;冯立;任思蒙.氩氦等离子体电弧特性的数值模拟[J].热加工工艺,2015(5):175-177,180.
[9] Bini R;Monno M;Boulos MI.Effect of cathode nozzle geometry and process parameters on the energy distribution for an argon transferred arc[J].Plasma Chemistry and Plasma Processing,20074(4):359-380.
[10] 孙清洁;林三宝;杨春利;梁迎春;赵国庆.超声钨极氩弧复合焊接电弧压力特征研究[J].机械工程学报,2011(4):53-57,65.
[11] 李刚;刘政;张娜.熔覆速度对氩弧熔覆铁基合金涂层组织及性能的影响[J].徐州工程学院学报(自然科学版),2009(2):77-79,84.
[12] 李会山;杨洗陈;于滨.铸铁凸轮轴激光熔凝工艺和性能研究[J].表面技术,2003(6):48-50.
[13] 沈保罗;高见;王艳戎;李莉;岳昌林;高致文;阳强;付子学;曾勇;沈晓海.QPQ处理对合金灰铸铁凸轮轴耐磨性的影响[J].现代铸铁,2008(3):74-77.
[14] 李泉华;张祝君.合金铸铁凸轮轴氩弧重熔淬火硬化层的磨损试验研究[J].金属热处理,2001(1):13-16.
[15] 任三平;袁野.凸轮轴氩弧重熔工艺的主要缺陷及解决办法[J].汽车工艺与材料,2002(10):20-22.
[16] 刘乐昕;刘政军;安希中;林克光.合金对铸铁局部重熔强化的影响[J].沈阳工业大学学报,2001(2):110-112.
[17] Agata Dudek;Agata Wronska;Lidia Adamczyk.Surface remelting of 316 L+434 L sintered steel: microstructure and corrosion resistance[J].Journal of solid state electrochemistry,201411(11):2973-2981.
[18] 鲍爱莲;刘万辉;杨莉.氩弧重熔工艺对GCr15钢硬度的影响[J].热加工工艺,2014(2):142-143.
[19] 唐林.退火处理对焊趾TIG重熔后T型接头疲劳强度的影响[J].机车车辆工艺,2011(04):10-12.
[20] 郭豪;倪宝成;董洪达;方孝钟.郁金香坡口焊接接头焊后TIG重熔数值模拟[J].电焊机,2011(1):78-81.
[21] 郑伟;郭志成.TIG重熔对A5083P-O铝合金焊接接头性能的影响[J].机车车辆工艺,2013(2):13-15.
[22] 满春水;马传平;朱志民;朱伟.TIG重熔对A5083铝合金焊接接头微区性能和残余应力的影响[J].焊接技术,2013(8):19-22.
[23] 张宏杰;温茂远;侯振;里达.结晶器铜板涂层界面结合强度的测定[J].表面技术,2014(3):169-174.
[24] 高雪松;田宗军;刘志东;沈理达.激光熔覆Al2O3-13%TiO2陶瓷涂层的界面特征[J].中国有色金属学报(英文版),2012(10):2498-2503.
[25] H. L. Tian;S. C. Wei;Y. X. Chen.MICROSTRUCTURE AND WEAR RESISTANCE OF AN ARC-SPRAYED Fe-BASED COATING AFTER SURFACE REMELTING TREATMENT[J].Strength of Materials,20142(2):229-234.
[26] 时海芳;王忠奇;白榆;周宇明.氩弧重熔铁基合金粉末喷涂层的组织与性能[J].金属热处理,2014(6):29-31.
[27] 颜海涛;赵建国;赵晓顺.钨极氩弧重熔对秸秆还田刀具耐磨性的影响[J].热加工工艺,2005(3):52-53.
[28] 陈桂山;刘宗德;胡卫强.激光与氩弧重熔热喷涂涂层的表面性能[J].腐蚀与防护,2012(04):320-323.
[29] C. Maldonado;D. Diaz;J. Ranallo;R. Painter;W. Dahir;D. Hassouna;B. Gayer;E. Toss;I. Martinez;P. Stoyanov;J. Ogren;E. W. Lee;D. Piatkowski;J. Hilty;O. S. Es-Said.Evaluation of the Effects of Powder Coating Cure Temperatures on the Mechanical Properties of Aluminum Alloy Substrates[J].Journal of Materials Engineering and Performance,20091(1):70-78.
[30] 叶宏;王宾;龙刚;邓代玉.AZ31镁合金表面Al合金化层的制备与性能研究[J].表面技术,2010(1):20-22.
[31] 倪志坚;邹友忠;曹关中;王继龙.几种热浸镀层抗高温氧化性能的比较[J].金属热处理,2001(10):24-27.
[32] 赵霞;刘兴;高丽敏.20G钢表面氩弧重熔强化热浸镀铝层的性能[J].黑龙江科技学院学报,2010(5):333-336.
[33] 赵霞;徐家文;刘爱莲.氩弧重熔对球墨铸铁热浸镀铝层组织和性能的影响[J].材料热处理学报,2010(2):133-136.
[34] Peter Jurci;Maria Hudakova.Diffusion Boronizing of H11 Hot Work Tool Steel[J].Journal of Materials Engineering and Performance,20117(7):1180-1187.
[35] 徐永礼;覃海泉;庞祖高;徐宇;徐仁强;郑勇.RE-N-C-S-V-Nb多元共渗H13钢的高温耐磨性[J].表面技术,2015(4):60-65.
[36] 刘小萍;葛培林;尤凯;王振霞;贺志勇.TiAl合金等离子渗铌及耐磨性研究[J].稀有金属材料与工程,2011(11):1891-1896.
[37] 赵霞;朱艳;徐家文.氩弧重熔对20G钢渗硼层组织结构和耐磨性能的影响[J].材料保护,2011(8):75-77.
[38] 马壮;张焱鑫;韦宝权;李智超.氩弧重熔 Q235钢 B-C-N共渗层的组织结构及耐磨性[J].金属热处理,2015(8):92-95.
[39] 马壮;张焱鑫;李玲;李智超.氩弧重熔对Q235钢B-C-N渗层冲蚀磨损性能的影响[J].材料导报,2015(14):116-119,147.
[40] F. Madadi;F. Ashrafizadeh;M. Shamanian.Optimization of pulsed TIG cladding process of stellite alloy on carbon steel using RSM[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20121(1):71-77.
[41] 杨庆祥;赵斌;员霄;蹤雪梅;周野飞.纳米Y2 O3对过共晶Fe-Cr-C堆焊合金表面微观组织与耐磨性的影响[J].表面技术,2015(4):42-47,53.
[42] 彭军波;陈冰泉;邓旅成.45#钢氩弧表面强化及其灰关联分析[J].武汉交通科技大学学报,2000(1):86-88.
[43] 徐桂芳;秦敏明;雷玉成;陈希章.Fe-Cr-Ni-Co合金堆焊和重熔层的空蚀性能[J].材料研究学报,2011(1):61-66.
[44] 臧伟;徐桂芳;吴浩;雷玉成.热处理对新型Fe-Cr-Mn-Co合金堆焊层磨粒磨损性能的影响[J].热加工工艺,2014(20):164-166,169.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%