欢迎登录材料期刊网

材料期刊网

高级检索

热浸镀锌是钢铁材料户外长效防护的最佳选择。传统的调整参数、试加合金等“试错法”难以满足现代制造业的发展,故全面、完整的热浸镀锌机理研究已迫在眉睫。针对我国批量热浸镀锌产量大、重经验轻理论、技术落后、污染严重等特点,从镀层的形成机理、镀层的合金化机理、锌浴液态特征等方面综述分析了批量热浸镀锌工艺理论的研究现状和不足,指出了基体和锌浴界面之间的相互作用、合金元素添加的可预测性、浸镀后表面粘附锌液层的结晶、锌浴液态特征等研究的重要性。建议从以下几个方面完善热浸镀锌机理:加强基材离开锌浴至冷却结晶结束这一阶段镀层组织结构的演变研究;在研究镀层合金化机理的同时,注重合金化镀层的应用推广,尤其是加强低合金高强钢的热浸镀锌研究;重视并加强锌浴表面张力、流动性、结晶特性的液态特征研究和数据积累;在形层机理研究的基础上,结合工艺参数进行镀层的预设计及镀层预控制研究。

Hot dip galvanizing is the best method for outdoor long-term protection of steel materials. The traditional pa-rameters adjustment and tentatively adding alloy are difficult to meet the requirement of development of modern manufacturing, so comprehensive study of mechanism in hot dip galvanizing is imminent. In view of the large output of hot-dip galvanized steels, the emphasis on the experience and ignoring the theory, the outdated techniques and the serious pollution, the research status and deficiencies of the process theory of batch hot-dip galvanizing in China were comprehensively analyzed based on the coating formation mechanism, the mechanism of alloying coating, and zinc bath liquid characteristics. At the same time, it was pointed out that the interfacial reaction between the matrix and the zinc melt, the adding predictability of zinc alloy elements, the crystallization of zinc on the surface of the workpiece after withdrawing from zinc bath, are very important in the study on me-chanism of hot dip galvanizing. It was recommended to improve the mechanism of hot-dip galvanized from the following as-pects: the development of the microstructure of zinc coating from the workpiece leaving from zinc bath to the crystallization ending of zinc on the surface of the coating, the application of alloying coating is more important than the mechanism study of alloying coating, to strengthen the research of high-strength low-alloy steel in hot dip galvanizing, to strengthen the research and data accumulation of the surface tension, fluidity and crystallization characteristics of the zinc bath, to study on the pre-design and pre-control of the coating with the combination of the mechanism and the galvanizing parameters.

参考文献

[1] 袁训华;仲海峰;朱利明;李宁;江社明;俞钢强;张启富.不同铝含量热镀锌合金化镀层的电解剥离实验[J].材料热处理学报,2013(7):175-180.
[2] 袁训华;刘昕;张启富.热镀锌合金化镀层相结构的定量化[J].材料保护,2011(1):71-74.
[3] 李新华,张大兴.热浸镀锌合金层形成机理的新观点[C].第七届亚太镀锌大会论文汇编,2007:82-94.
[4] Nakano J;Malakhov DV;Yamaguchi S;Purdy GR.A full thermodynamic optimization of the Zn-Fe-Al system within the 420-500 degrees C temperature range[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,20071(1):125-140.
[5] Bhattacharya, B;Kumar, GRD;Agarwal, A;Erkoc, S;Singh, A;Chakraborti, N.Analyzing Fe-Zn system using molecular dynamics, evolutionary neural nets and multi-objective genetic algorithms[J].Computational Materials Science,20094(4):821-827.
[6] Wei Xiong;Yi Kong;Yong Du;Zi-Kui Liu;Malin Selleby;Wei-Hua Sun.Thermodynamic investigation of the galvanizing systems, I: Refinement of the thermodynamic description for the Fe-Zn system[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,20092(2):433-440.
[7] Xiong, W.;Xu, H.;Du, Y..Thermodynamic investigation of the galvanizing systems, II: Thermodynamic evaluation of the NiZn system[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,20113(3):276-283.
[8] Chunmei Liu;Jianhua Wang;Fucheng Yin.The Zn-rich corner of the 450 deg C isothermal section of the Zn-Bi-Fe-Ni quaternary system[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20091/2(1/2):213-218.
[9] Shiwen Pan;Fucheng Yin;Manxiu Zhao.The zinc-rich corner of the 450 deg C isothermal section of the Zn-Al-Fe-Si quaternary system[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20091/2(1/2):600-605.
[10] Yuttanant Boonyongmaneerat;Kanokwan Saengkiettiyut;Pranee Rattanawaleedirojn;Charttanong Angkaprasert;Jumpot Wanichsampan;Sawalee Saenapitak.Effect of NiCl2-Based Fluxes on Interfacial Layer Formation of Hot Dip Galvanized Steels[J].钢铁研究学报(英文版),2010(08):74-78.
[11] 许乔瑜;曾秋红.热浸镀锌合金镀层的研究进展[J].材料导报,2008(12):52-55.
[12] G.K. Mandal;D. Mandal;S.K. Das.Microstructural study of galvanized coatings formed in pure as well as commercial grade zinc baths[J].Transactions of the Indian Institute of Metals,20091(1):35-40.
[13] 车淳山;曾发明;孔纲;卢锦堂;王霞.热浸镀锌铝系列合金镀层的研究进展[J].材料导报,2013(15):135-138.
[14] 吴长军;苏旭平;王建华;王鑫铭;涂浩.Zr,Co,Ni,V微合金化对含硅结构钢热浸镀锌性能的影响[J].材料热处理学报,2012(1):69-73.
[15] 许乔瑜;桂艳;卢锦堂;孔纲;车淳山.热浸Zn-Ti合金镀层的显微组织与耐蚀性能[J].华南理工大学学报(自然科学版),2008(7):82-86.
[16] 黄国雄;王胜民;何明奕;赵晓军;苑振涛.热浸镀Zn-Ti及Zn-Ti-Al合金层的耐蚀性能[J].材料保护,2010(12):11-13.
[17] 王胜民;黄国雄;何明奕;赵晓军;陈华.添加Ti和Al对热浸镀锌层组织结构的影响[J].材料热处理学报,2013(8):158-162.
[18] Su, X.;Wu, C.;Liu, D.;Yin, F.;Zhu, Z.;Yang, S..Effect of vanadium on galvanizing Si-containing steels[J].Surface & Coatings Technology,20101(1):213-218.
[19] Pistofidis N;Vourlias G;Pavlidou E;Stergioudis G.Effect of Ti, Ni and Bi addition to the corrosion resistance of Zn hot-dip galvanized coatings[J].Journal of optoelectronics and advanced materials,20076(6):1653-1659.
[20] 瓮金鹏;储双杰;张理扬;孙宝德.热镀锌高强钢的研究进展[J].材料保护,2012(8):40-44.
[21] 孙捷;万明攀.热浸镀锌池中的Bi对Q235钢和Q345钢硅反应性的作用[J].材料保护,2012(6):25-27.
[22] Blumenau, M.;Norden, M.;Schulz, J.;Friedel, F.;Peters, K..Wetting and reactive wetting during hot-dip galvanizing of high Mn alloyed steel with Zn-Al-Mg baths[J].Surface & Coatings Technology,201219/20(19/20):4194-4201.
[23] Arndt, M.;Duchoslav, J.;Steinberger, R.;Hesser, G.;Commenda, C.;Samek, L.;Arenholz, E.;Stifter, D..Nanoscale analysis of the influence of pre-oxidation on oxide formation and wetting behavior of hot-dip galvanized high strength steel[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2015Apr.(Apr.):148-158.
[24] Shibli, S. M. A.;Meena, B. N.;Remya, R..A review on recent approaches in the field of hot dip zinc galvanizing process[J].Surface & Coatings Technology,2015:210-215.
[25] Manna, M..Effect of fluxing chemical: An option for Zn-5wt.%Al alloy coating on wire surface by single hot dip process[J].Surface & Coatings Technology,201112(12):3716-3721.
[26] dos Santos, A. Pritzel;Manhabosco, S. M.;Rodrigues, J. S.;Dick, L. F. P..Comparative study of the corrosion behavior of galvanized, galvannealed and Zn55Al coated interstitial free steels[J].Surface & Coatings Technology,2015:150-160.
[27] E. M. Bellhouse;J. R. McDermid.Analysis of the Fe-Zn interface of galvanized high Al-low Si TRIP steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):39-46.
[28] Y.H. LIU.Density and Viscosity of Molten Zn-Al Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20069(9):2767-2771.
[29] Blumenau, M.;Norden, M.;Friedel, F.;Peters, K..Wetting force and contact angle measurements to evaluate the influence of zinc bath metallurgy on the galvanizability of high-manganese-alloyed steel[J].Surface & Coatings Technology,20103(3):828-834.
[30] Blumenau, M.;Norden, M.;Friedel, F.;Peters, K..Use of pre-oxidation to improve reactive wetting of high manganese alloyed steel during hot-dip galvanizing[J].Surface & Coatings Technology,20112/3(2/3):559-567.
[31] Blumenau, M.;Norden, M.;Friedel, F.;Peters, K..Reactive wetting during hot-dip galvanizing of high manganese alloyed steel[J].Surface & Coatings Technology,201110(10):3319-3327.
[32] Prosek, Tomas;Persson, Dan;Stoulil, Jan;Thierry, Dominique.Composition of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2014Sep.(Sep.):231-238.
[33] ZHANG Yan;CUI Qi-peng;SHAO Fu-qun;WANG Jun-sheng;ZHAO Hong-yang.Influence of Air-Knife Wiping on Coating Thickness in Hot-Dip Galvanizing[J].钢铁研究学报:英文版,2012(06):70-78.
[34] Liu, Ya;Tang, Maoyou;Song, Yuanyuan;Wu, Changjun;Peng, Haoping;Su, Xuping;Wang, Jianhua.Reactions of FeCr alloys with liquid zinc in hot-dip galvanizing[J].Surface & Coatings Technology,2015:714-720.
[35] Marder AR..The metallurgy of zinc-coated steel [Review][J].Progress in materials science,20003(3):191-271.
[36] 于波涛;何明奕;王胜民;赵晓军;宋丹.热浸镀锌基合金流动性研究及组织分析[J].钢铁研究,2011(2):30-32,42.
[37] 于波涛;何明奕;王胜民;赵晓军.工况条件下锌基合金表面张力测定及极化曲线分析[J].钢铁研究,2010(4):20-22,27.
[38] 罗龚;曾建民.热浸镀锌反应性润湿及镀层形成研究进展[J].应用化工,2014(3):543-548.
[39] A. SEMOROZ;L. STREZOV;M. RAPPAZ.Numerical Simulation of Zn Coating Solidification[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20028(8):2685-2694.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%