不锈钢在海洋环境中,钝化膜易被破坏,从而发生局部腐蚀。阴极保护是海洋工程中有效、可靠的常用保护手段,能够对不锈钢形成有效保护。综述了不锈钢在海水环境中的阴极保护发展现状,发现阴极保护不仅能避免局部腐蚀的发生,对已发生的点蚀、缝隙腐蚀也具有良好的抑制作用,但是不同的阴极保护电位对不锈钢基体和钝化膜存在影响。当阴极保护电位过正时,无法对基体形成有效保护;随着保护电位负移,在一定范围内可以对不锈钢形成有效保护,有利于保持钝化膜的完整;保护电位过负时,则会发生析氢反应,有出现氢致开裂的风险,钝化膜还存在活化的风险,会导致均匀腐蚀的发生。目前,大量研究只是确定不锈钢在某一环境中的电位保护范围,但保护电位范围跨度一般比较大,在实际实施保护的过程中,对施加电位的选择仍没有一个明确的标准。
Passivation film of stainless steel in the marine environment is easily damaged, leading to occurrence of loca-lized corrosion. Cathodic protection is an effective and reliable means of protection commonly used in marine environment, which can form an effective protection for stainless steel. In this paper, the development status of cathodic protection of stainless steel in marine environments was reviewed and it was found that cathodic protection could not only avoid the occurrence of lo-calized corrosion, but also have good inhibitory effect on existing pitting and crevice corrosions, however, different cathodic protection potentials would influence the stainless steel substrate and thepassivation film. When the cathodic protection potential was too positive, it would fail to effectively protect the stainless steel substrate. With the negative shift of protection potential within a certain range, the stainless steel could be effectively protected, keeping the passivation film intact. If the protection poten-tial was too negative, hydrogen evolution reaction occurred, with the risk of hydrogen induced cracking, and there was the risk of passive film activation, resulting in uniform corrosion. Currently, a large number of studies were focused on determination of the potential protection scope of stainless steel in a certain environment, but the protection potential range span is generally quite large, therefore in the actual implementation of protection, there is still no clear selection criteria of the applied potential.
参考文献
[1] | Bastos AC;Simoes AM;Gonzalez S;Gonzalez-Garcia Y;Souto RM.Application of the scanning electrochemical microscope to the examination of organic coatings on metallic substrates[J].Progress in Organic Coatings: An International Review Journal,20053(3):177-182. |
[2] | LIU Yu-rong;YE Dong;YONG Qi-long;SU Jie;ZHAO Kun-yu;JIANG Wen.Effect of Heat Treatment on Microstructure and Property of Cr13 Super Martensitic Stainless Steel[J].钢铁研究学报:英文版,2011(11):60-66. |
[3] | 魏刚;熊蓉春.绿色化学与防腐蚀技术的发展方向[J].腐蚀科学与防护技术,2001(1):33-36. |
[4] | Janusz Smulko;Kazimierz Darowicki;Artur Zielinski.Pitting corrosion in steel and electrochemical noise intensity[J].Electrochemistry communications,20025(5):388-391. |
[5] | Niu, L;Yin, YH;Guo, WK;Lu, M;Qin, RJ;Chen, SH.Application of scanning electrochemical microscope in the study of corrosion of metals[J].Journal of Materials Science,200917(17):4511-4521. |
[6] | S. Akonko;D. Y. Li;M. Ziomek-Moroz.Effects of cathodic protection on corrosive wear of 304 stainless steel[J].Tribology letters,20053(3):405-410. |
[7] | 孟超;曲政;庞其伟.1Cr18Ni9Ti海水循环水泵阴极保护参数[J].腐蚀与防护,2004(11):473-474,488. |
[8] | 薄鑫涛.不锈钢钢种发展的一些动向[J].热处理,2007(04):5-9. |
[9] | 王斌;栗卓新;李国栋.超级马氏体不锈钢焊接的研究进展[J].新技术新工艺,2008(5):57-61. |
[10] | Xiangrong Zhang;Dmitrij Zagidulin;David W. Shoesmith.Characterization of film properties on the Ni-Cr-Mo Alloy C-2000[J].Electrochimica Acta,2013:814-822. |
[11] | 林昌健.不锈钢点腐蚀发生的早期过程 Ⅱ.电化学扫描隧道显微研究[J].腐蚀科学与防护技术,1997(04):259. |
[12] | 许淳淳;张晓波;刘幼平.A3钢及304不锈钢孔蚀保护电位的确定[J].中国腐蚀与防护学报,2001(2):70-75. |
[13] | 胡建朋;刘智勇;胡山山;李晓刚;杜翠薇.304不锈钢在模拟深海和浅海环境中的应力腐蚀行为[J].表面技术,2015(3):9-14. |
[14] | 阴极极化对碳钢局部腐蚀闭塞区化学和电化学状态的影响[J].腐蚀科学与防护技术,2000(05):260-263. |
[15] | 许淳淳.孔蚀阴极保护电位测试方法的研究[J].电化学,1999(02):152. |
[16] | 程学群;李晓刚;杜翠薇.316L不锈钢在含氯高温醋酸溶液中的自钝化行为[J].北京科技大学学报,2006(9):840-844. |
[17] | 程学群;李晓刚;杜翠薇;杨丽霞.316L不锈钢在醋酸溶液中的钝化膜电化学性质[J].北京科技大学学报,2007(9):911-915. |
[18] | 程学群;李晓刚;杜翠薇.316L不锈钢在含Cl-高温醋酸溶液中的电化学行为[J].金属学报,2006(3):299-304. |
[19] | 王志刚;李久青;吴荫顺.阴极保护对氯化物环境中1Cr13不锈钢微动腐蚀的影响[J].北京科技大学学报,1999(4):365-368. |
[20] | 杜敏;孙兆栋.410不锈钢在海水中阴极极化行为的研究[J].中国海洋大学学报(自然科学版),2010(9):91-95. |
[21] | 杨兆艳;闫永贵;马力;张桂玲.阴极极化对907钢氢脆敏感性的影响[J].腐蚀与防护,2009(10):701-703. |
[22] | 邱景 .316L不锈钢在模拟油田采出水中的阴极保护研究[D].中国海洋大学,2014. |
[23] | 张体明;赵卫民;郭望;王勇.阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J].中国腐蚀与防护学报,2014(4):315-320. |
[24] | Q. Yang;J. L. Luo.The effects of hydrogen on the breakdown of passive films formed on type 304 stainless steel[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,20001/2(1/2):132-139. |
[25] | 孙兆栋;杜敏;张静;蒋斌.316L不锈钢在海水中的阴极极化行为研究[J].材料科学与工艺,2011(1):36-40. |
[26] | 王建才.外加电位对金属材料腐蚀速率的影响[J].轻工科技,2015(3):24,39. |
[27] | Orfei LH;Simison S;Busalmen JP.Stainless steels can be cathodically protected using energy stored at the marine sediment/seawater interface[J].Environmental Science & Technology: ES&T,200620(20):6473-6478. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%