欢迎登录材料期刊网

材料期刊网

高级检索

目的:测试防蚀膏在某LNG码头钢管桩飞溅区的保护效果。方法模拟飞溅区的干湿交替,利用循环海水浸泡、自腐蚀电位测试、间歇盐雾实验、电化学阻抗测试、极化电阻测试、极化曲线测试,对防蚀膏的防蚀效果进行测试,并与钙基润滑脂、锂基润滑脂的防蚀效果进行对比。结果涂抹三种油脂的钢试样的质量随海水浸泡时间的延长而趋于稳定。防蚀膏和钙基脂试样的自腐蚀电位较正。在盐雾实验中,防蚀膏无红锈,钙基脂和锂基脂试样出现了红锈。防蚀膏试样随实验时间的延长,阻抗未降低,而钙、锂基脂试样均随实验时间的延长出现阻抗降低。防蚀膏的极化电阻是钙、锂基脂的1.5~9倍,钝化区的电流密度是钙、锂基脂的1/100~1/10。结论防蚀膏保护效果最好,钙基脂次之,锂基脂最差。

ABSTRACT:Objective The study aimed to test the protective effect of anticorrosion grease in the splash zone of the steel pipe piles in a LNG wharf.Methods Circulating seawater immersion test, self-corrosion potential test, intermittent salt spray test, linear polarization test, polarization curve test and electrochemical impedance test were used to test the effect of anticorro-sion grease in the simulating environment of the marine splash zone. The protective effect was compared with the calcium-base grease and lithium-base grease.Results With the extension of soaking time, the weight of the samples covered with all three kinds of greases became stable. The potentials of samples covered with anticorrosion grease and calcium-base grease were more positive. In salt spray test, the samples covered with anticorrosion grease had no red rust, while those with calcium-base grease and lithium grease had red rust. With the extension of experimental time, the impedance of anticorrosion grease had no obvious change, while those of calcium-base grease and lithium-grease decreased rapidly. The polarization resistance of anticorrosion grease was 1.5~9 times as high as those of the calcium-base grease and lithium-base grease. The current density of anticorrosion grease in the passivation region was about 1/100~1/10 of those of calcium-base grease and lithium-base grease.Conclusion The protective effect of anticorrosion grease was the best, followed by calcium-base grease, and then lithium-base grease.

参考文献

[1] 王在峰;侯保荣;孙虎元;宋积文;陈胜利;张大勇.护堤钢板阴极保护电场的有限元仿真[J].船海工程,2015(4):130-134.
[2] Corrosion of vertical mild steel strips in seawater[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,200910(10):2291.
[3] Xiutong Wang;Jizhou Duan;Jie zhang;Baorong Hou.Alloy elements' effect on anti-corrosion performance of low alloy steels in different sea zones[J].Materials Letters,20088/9(8/9):1291-1293.
[4] 杨小刚;贾淑香;田边弘往;侯保荣.无溶剂超厚膜环氧涂层海洋腐蚀模拟试验研究[J].中国港湾建设,2012(2):76-80.
[5] 戴永寿.海洋钢结构物浪溅区和潮差区的腐蚀与防护[J].材料保护,1981(02):2.
[6] 王焕焕;杜敏.海洋飞溅区钢结构的防腐蚀技术[J].腐蚀科学与防护技术,2015(5):483-491.
[7] Martin Smith;Colin Bowley;Lucian Willimas.In situ protection of splash zones-30 years on[J].Materials Performance,200210(10):30-33.
[8] 侯保荣.钢铁设施在海洋浪花飞溅区的腐蚀行为及其新型包覆防护技术[J].腐蚀与防护,2007(04):174-175,187.
[9] 侯保荣.海洋钢结构浪花飞溅区腐蚀防护技术[J].中国材料进展,2014(01):26-30.
[10] 侯保荣;杨小刚;贾淑香.海洋浪溅区钢结构腐蚀与复层包覆防护实践[J].中国港湾建设,2012(2):70-72.
[11] E. A. Popov;V. P. Nekhoroshev;A. V. Nekhorosheva.Modified anticorrosion composition based on gun grease[J].Chemistry and Technology of Fuels and Oils,20024(4):257-259.
[12] 刘建国;李言涛;侯保荣.防锈油脂概述[J].腐蚀科学与防护技术,2008(5):372-376.
[13] Bei Qian;Baorong Hou;Meng Zheng.The inhibition effect of tannic acid on mild steel corrosion in seawater wet/dry cyclic conditions[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2013Jul.(Jul.):1-9.
[14] 钱备 .钢结构浪溅区腐蚀防护技术及缓蚀剂在干湿交替下的研究[D].中国科学院大学,2014.
[15] 陈君 .低碳钢浪花飞溅区腐蚀和防腐带保护技术研究[D].中国科学院研究生院,2012.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%