欢迎登录材料期刊网

材料期刊网

高级检索

目的:探究原油长输管道阴极保护失效的原因。方法通过管道通/断电电位测试、集输末站内外电位测试和绝缘法兰测试等方法,判断集输管线是否处于有效的保护状态,站内外阴极保护是否存在直流干扰情况,以及绝缘法兰的工作情况。结果1#集气站-1#阀室管道通电电位为?850~1200 mV,断电电位为?773~788 mV,不满足比?850 mV更负的准则。站外管线通/断电电位虽然随着站内阴保电流的增大而增大,但是在电流为6、18 A时,其断电电位分别为?880 mV和?1198 mV,在保护电位范围之内(?850~1200 mV),没有产生过保护,符合国标的要求。站内外阴极保护干扰是客观存在的,可以通过调节及平衡站内外的输出,使站内外管道的保护电位在规定的电位区间之内(?850~1200 mV)。集输末站处的绝缘法兰性能良好,但是锌接地电池基本耗尽。结论管道断电电位没有达到要求,且集输末站内外阴极保护存在相互干扰,是该长输管道阴极保护失效的主要原因。

ABSTRACT:Objective To explore the reasons for the failure of cathodic protection (CP) of long-distance pipeline. Methods The pipe on/off-potential test, potential distribution measurement and insulated flange test were adopted to investigate the pro-tection status of the gathering pipelines, the direct current effects on the cathodic protection and the operation status of the insu-lated flange. ResultsThe on-potential values of pipelines of 1#gas gathering station-1#valve chamber met the national standard within the range from?850 mV to?1200 mV. However, the off-potential values were in the range of?773~788 mV, which conflicted with the principle that requested the value to be lower than?850 mV. Although the on/off-potential of outside station increased with the increasing cathodic current in the inside station, the off-potential was still in the protection range of?850~1200 mV with the values of?880 mV and?1198 mV, respectively. As a result, overprotection was not observed and the national standard was strictly kept. The interference of CP was supposed to exist both inside and outside of the gathering station. We could adjust and balance the output inside and outside the station to make the protective potential of the pipeline reach the standard value within the range from?850 mV to?1200 mV, such as decreasing the output current of anode close to pipe out-side the station, increasing the output of anode far from pipe of the station. Insulation flange performed well in the terminal sta-tion, but the grounding zinc battery was depleted. ConclusionThe CP off-potential in the terminal station didn’t meet the re-quirements. The interference of cathodic protection systems between the inside and outside of the terminal station was the main reason for the failure of the cathodic protection of the long-distance pipeline.

参考文献

[1] 陈郁栋;曾志翔;彭叔森;乌学东;薛群基.苯胺三聚体固化环氧树脂制备防腐蚀涂层及其性能研究[J].表面技术,2014(3):158-162.
[2] 王华.聚吡咯涂层的制备及耐腐蚀性能研究[J].表面技术,2015(03):111-115.
[3] 宋东东;高瑾;李瑞凤;李晓刚.碳纳米管复合水性丙烯酸涂层的腐蚀性能研究[J].表面技术,2015(3):47-51.
[4] 钱鸿昌;李海扬;张达威.超疏水表面技术在腐蚀防护领域中的研究进展[J].表面技术,2015(3):15-24,30.
[5] 祝馨.长输管道的腐蚀与防护[J].石油化工腐蚀与防护,2006(01):51-53.
[6] 胡士信.管道阴极保护技术现状与展望[J].腐蚀与防护,2004(03):93-101.
[7] 潘一;孙林;杨双春;于斌.国内外管道腐蚀与防护研究进展[J].腐蚀科学与防护技术,2014(1):77-80.
[8] 姜军;王辉;张春晓;赵震杰;章钢娅.三种黑色金属的土壤腐蚀行为与土壤性质的关系[J].装备环境工程,2015(4):38-43.
[9] 张其敏;陈宁.埋地管道阴极保护效果监测技术分析[J].油气田地面工程,2008(9):9-10.
[10] 黄颖军;楼淼;芦玉峰;周萌.埋地环境下容器外腐蚀检测技术浅析[J].表面技术,2013(4):122-126.
[11] 徐承伟;薛致远;滕延平;吴长访;张丰;张永盛;高强.GPS同步中断法在阴极保护有效性评价中的应用[J].管道技术与设备,2012(1):50-51,59.
[12] 李自力;谢跃辉;郝宏娜;尚兴彬.埋地管道阴极保护电位测量方法研究进展[J].腐蚀与防护,2012(01):55-59.
[13] 陈胜利;兰志刚;宋积文;王在峰.长输天然气管线的腐蚀与防护[J].全面腐蚀控制,2011(1):38-41.
[14] 薛致远;张丰;毕武喜;罗鹏;张永盛;高强;王保春.东北管网阴极保护通电/断电电位测量与分析[J].油气储运,2010(10):772-773,787.
[15] 翁永基;李相怡.埋地管道阴极保护电位IR降评估方法的研究[J].腐蚀科学与防护技术,2004(6):360-362.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%