欢迎登录材料期刊网

材料期刊网

高级检索

回顾了高酸原油加工防腐经验。加工高酸值原油是炼油企业控制成本、提高赢利空间的重要手段,但同时要面临设备腐蚀加剧问题,如高于230℃的高温部位、减压塔内器件、过流部件等腐蚀严重。各炼油企业普遍采取装置适应性改造、材质升级、加强在线腐蚀监测、高温缓蚀剂等技术手段应对高酸值原油腐蚀问题,然而设备腐蚀风险并没有得到彻底控制,由于腐蚀严重而导致的非计划停工仍难以杜绝,因此许多学者持续开展了高温环烷酸腐蚀研究。通过在模拟介质中的实验研究掌握了温度、总酸值、硫含量等因素对高温环烷酸腐蚀的影响,发现硫腐蚀可以部分抑制环烷酸腐蚀。近年来,实际馏分中环烷酸腐蚀和硫腐蚀交互作用得到了更多关注,重点是研究硫腐蚀产物膜在环烷酸腐蚀环境中的作用和机理。发展了旋转圆环实验装置、喷射式实验装置、流经式迷你高压釜、常温高速双相流模拟装置等,从不同角度模拟工况条件,使之更加接近工业生产实际工况。发展了预成膜-后腐蚀的“Challenge(挑战)”实验,用于研究钝化膜在高温环烷酸腐蚀中的行为和特性。环烷酸在馏分中的分布以及对腐蚀的影响也得到了广泛关注。基于机理或者经验数据的腐蚀预测模型已经成为各种炼厂设备完整性管理技术的基础。

Industry experience of processing high Total Acid Number (TAN) crude oil was reviewed. Purchasing and processing crude oil with high TAN is an important means to improve the profit for refinery; however, the crude oil refining unit also suffers from severe naphthenic acid corrosion (NAC). NAC usually happens at the high temperature parts above 230℃, internal parts of vacuum distillation tower and flow components. Many effective methods have been applied to improve the per-formance of refining units against NAC. The methods include improving corrosive adaptability of units, material upgrading, on-line corrosion monitoring, high temperature corrosion inhibitor and so on. However, the risk of corrosion of the equipment has not been completely controlled. Non-planned unit shutdown still occurs occasionally due to the serious corrosion. Therefore, research on high temperature NAC has been continuously carried out for decades. Experimental results of simulated medium revealed effects of temperature, TAN and sulfur content on NAC, and indicated sulfidation corrosion (SC) can partially inhibit NAC. In recent years, the research interest has been gradually turned to the NAC in the real fraction, and the synergistic effect of NAC and SC, focusing on the inhibition effect of sulfur corrosion product film against NAC. Many new experimental devices have been developed, such as the rotating ring, the impingement device, flow-through mini autoclave, and high speed dual phase flow simula-tion device. These devices simulate operating conditions in the real field from different points of view. Challenge (pretreat-corrosion) experiments have been developed to study the behavior and characteristics of passive film in high-temperature NAC environment. The distribution of naphthenic acid in the real fraction has also been widely studied. The corrosion prediction model has been developed and used as the basis for a variety of refinery equipment integrity management technologies.

参考文献

[1] 尤新华;王亦成;李小东;杨丽燕.原油劣质化对常减压装置的影响和应对措施[J].腐蚀与防护,2015(8):788-791.
[2] 陈金晖.常减压装置渣油管线腐蚀原因及防护[J].管道技术与设备,2015(4):39-41.
[3] 张艳飞;陈旭;何川;陈宇;王冠夫;张玉刚.原油性质对16Mn钢腐蚀行为影响灰关联分析[J].中国腐蚀与防护学报,2015(1):43-48.
[4] 史艳华;徐燕飞;马大永;梁平;刘峰.炼油装置常用材质高温环烷酸腐蚀的主要影响因素及腐蚀行为[J].材料保护,2014(10):61-64.
[5] 刘贵群;郑玉贵;姜胜利;荆军航;董伟娟;曾宏;司品宪.模拟炼油环境中Q235钢和Cr5Mo钢表面硫化物膜稳定性及动态冲刷腐蚀行为研究[J].中国腐蚀与防护学报,2015(2):122-128.
[6] 马红杰;殷悦;赵敏.蒸馏装置的硫腐蚀及防护[J].石油化工设备技术,2015(2):35-38.
[7] 胡洋;刘志民;张鸿泽;李越强.渣油加氢装置原料系统腐蚀分析及对策[J].石油化工腐蚀与防护,2014(6):12-17.
[8] Amir Mostafaei;Seyed Majid Peighambari;Farzad Nasirpouri.Failure analysis of monel packing in atmospheric distillation tower under the service in the presence of corrosive gases[J].Engineering failure analysis,2013:241-251.
[9] 单广斌;吕广磊;丁明生;刘小辉.减压塔发生严重腐蚀的原因分析与讨论[J].石油化工设备技术,2015(3):33-36.
[10] 单广斌;吕广磊;刘小辉;李贵军.减压环境下的腐蚀实验研究[J].石油化工腐蚀与防护,2015(2):15-17.
[11] 黄景峰;韩英杰;闫海清;呼立红;王新凯;郑丽群.减压蒸馏塔的腐蚀与防护[J].石油化工腐蚀与防护,2015(2):34-36.
[12] Paulo P. Alvisi;Vanessa F.C. Lins.An overview of naphthenic acid corrosion in a vacuum distillation plant[J].Engineering failure analysis,20115(5):1403-1406.
[13] 刘小辉;李贵军;兰正贵;黄贤滨;张艳玲.炼油装置防腐蚀设防值研究[J].石油化工腐蚀与防护,2012(1):27-29.
[14] 刘小辉;李贵军;兰正贵;黄贤滨;张艳玲.劣质原油加工装置设防值研究[J].石油化工设备技术,2012(2):61-64.
[15] Pradip Chandra Mandal;Wahyudiono;Mitsuru Sasaki;Motonobu Goto.Reduction of total acid number (TAN) of naphthenic acid (NA) using supercritical water for reducing corrosion problems of oil refineries[J].Fuel,2012:620-623.
[16] Mehrnoosh Moradi;Elena Topchiy;Teresa E. Lehmann;Vladimir Alvarado.Impact of ionic strength on partitioning of naphthenic acids in water-crude oil systems - Determination through high-field NMR spectroscopy[J].Fuel,2013Oct.(Oct.):236-248.
[17] Pradip Chandra Mandal;Wahyudiono;Mitsuru Sasaki.Non-catalytic reduction of total acid number (TAN) of naphthenic acids (NAs) using supercritical methanol[J].Fuel Processing Technology,2013:641-644.
[18] 吕振波;田松柏;翟玉春;赵杉林;庄丽宏.高温环烷酸腐蚀抑制剂及评定方法的研究进展[J].腐蚀科学与防护技术,2004(3):151-154,184.
[19] 张玉芳;路民旭;朱雅红.温度对抗环烷酸腐蚀缓蚀剂成膜行为的影响[J].石油炼制与化工,2004(8):67-70.
[20] 张玉芳;路民旭;朱雅红.炼油厂环烷酸腐蚀缓蚀剂的研究进展[J].材料保护,2001(2):5-7.
[21] 黄占凯;郭春燕;刘春生;罗根祥.新型环烷酸腐蚀缓蚀剂的合成及缓蚀性能研究[J].石油炼制与化工,2005(11):63-65.
[22] 余进;周斌.氢通量检测在高酸原油管线腐蚀监测中的应用[J].管道技术与设备,2015(5):36-38,41.
[23] A. Turnbull;E. Slavcheva;B. Shone.Factors controlling naphthenic acid corrosion[J].Corrosion: The Journal of Science and Engineering,199811(11):922-930.
[24] 胡洋;李晓刚;周建龙.环烷酸腐蚀研究方法进展[J].石油化工腐蚀与防护,2009(3):5-9.
[25] D.R. Qu;Y.G. Zheng;H.M. Jing;Z.M. Yao;W. Ke.High temperature naphthenic acid corrosion and sulphidic corrosion of Q235 and 5Cr1/2Mo steels in synthetic refining media[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,20068(8):1960-1985.
[26] D. R. Qu;Y. G. Zheng;H. M. Jing;X. Jiang;W. Ke.Erosion-corrosion of Q235 and 5Cr1/2Mo steels in oil with naphthenic acid and/or sulfur compound at high temperature[J].Materials and Corrosion,20058(8):533-541.
[27] Ding-Rong Qu;Yu-Gui Zheng;Xiu Jiang;Wei Ke.Correlation between the corrosivity of naphthenic acids and their chemical structures[J].Anti-Corrosion Methods and Materials,20074(4):211-218.
[28] 齐静侠;张会成;杜彦民;高波.胜利高酸原油馏分油中石油酸的腐蚀性研究[J].石油炼制与化工,2015(4):88-92.
[29] G. C. Laredo;C. R. Lopez;R. E. Alvarez.Naphthenic acids, total acid number and sulfur content profile characterization in Isthmus and Maya crude oils[J].Fuel,200411/12(11/12):1689-1695.
[30] Omar Yepez.On the chemical reaction between carboxylic acids and iron, including the special case of naphthenic acid[J].Fuel,20077/8(7/8):1162-1168.
[31] Keroly A.P. Colati;Guilherme P. Dalmaschio;Eustaquio V.R. de Castro;Alexandre O. Gomes;Boniek G. Vaz;Wanderson Romao.Monitoring the liquid/liquid extraction of naphthenic acids in brazilian crude oil using electrospray ionization FT-ICR mass spectrometry (ESI FT-ICR MS)[J].Fuel,2013Jun.(Jun.):647-655.
[32] B.S. Huang;W.F. Yin;D.H. Sang;Z.Y.Jiang.Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2012:664-670.
[33] Patrick, Brian N.;Chakravarti, Rajashree;Devine, Thomas M..Dynamic measurements of corrosion rates at high temperatures in high electrical resistivity media[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2015May(May):99-103.
[34] M. A. Deyab;H. A. Abo Dief;E. A. Eissa;A. R. Taman.Electrochemical investigations of naphthenic acid corrosion for carbon steel and the inhibitive effect by some ethoxylated fatty acids[J].Electrochimica Acta,200728(28):8105-8110.
[35] Fernanda Hass;Ana C. T. G. Abrantes;Alysson N. Diogenes;Haroldo A. Ponte.Evaluation of naphthenic acidity number and temperature on the corrosion behavior of stainless steels by using Electrochemical Noise technique[J].Electrochimica Acta,2014:206-210.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%