欢迎登录材料期刊网

材料期刊网

高级检索

目的:在5083铝合金表面激光熔覆制备Al-Ni-Y-Co-La非晶复合熔覆层,并研究扫描速度对熔覆层组织与性能的影响规律。方法采用YAG:Nd激光器,在扫描速度分别为200、300、400 mm/min下制备Al基非晶复合层,并采用金相显微镜、扫描电子显微镜、X射线衍射仪、硬度仪、摩擦磨损试验机观察熔覆层微观组织及测试其显微硬度及耐磨损性能。结果熔覆层主要由α-Al相、Al3Y及Al4NiY等金属化合物相组成。随着扫描速度的增加,熔覆层组织由粗大的条(柱)状晶向细小的等轴晶转变,当扫描速度大于300 mm/min时,熔覆层内存在部分非晶复合区域。熔覆层平均显微硬度大于250HV0.1,当扫描速度为300 mm/min时,熔覆层显微硬度最高达300HV0.1。低载荷下,扫描速度为200、300、400 mm/min时的熔覆层和基体的平均摩擦系数分别为0.384、0.288、0.304、0.571,平均磨损体积分别为7.586×107、2.516×107、5.027×107、45.638×107μm3,熔覆层平均摩擦系数和磨损体积较5083基体均显著降低。结论采用激光熔覆技术能够制备Al基非晶复合层。当扫描速度为300 mm/min时,熔覆层具有最佳的成形性和耐磨损性能;当扫描速度进一步增大至400 mm/min时,熔池拖带基体翻卷上浮导致成分严重偏析,使熔覆层的成形性和耐磨损性能下降。

ABSTRACT:Objective To fabricate Al-Ni-Y-Co-La amorphous composite claddings on 5083 substrates by laser cladding, and study the effects of laser scanning speed on microstructure and performance of the cladding.Methods YAG:Nd laser was used to fabricate Al-based amorphous composite claddings at the speed of 200, 300, 400 mm/min. OM, SEM, XRD, hardness tester and friction wear testing machine were used to observe the microstructure and test the microhardness and wear resistance of claddings. ResultsThecladding mainly consistedof α-Al, Al3Y, Al4NiY and other metallic compound phases. With the in- crease of scanning speed, the grain structure changed from the coarse banded crystal to the minor isometric crystal. When the laser scanning speed was over 300 mm/min, there was a partial amorphous phase. The average microhardness of the cladding was greater than 250HV0.1. When the scanning speed was 300 mm/min, the biggest microhardness of the cladding reached 300HV0.1. The average friction coefficient of cladding and substrate at low load when scanning speed was 200, 300, 400 mm/min was 0.384, 0.288, 0.304 and 0.571, and the corresponding average wear volume was 7.586×107, 2.516×107, 5.027×107, 45.638×107μm3. The claddings showed very lower friction coefficient and wear volume than 5083 substrate.Conclusion Al-based amorphous composite claddings can be fabricated by laser cladding. When the laser scanning speed is about 300 mm/min, the cladding has the best formability and wear resistance. While the scanning speed further increases to 400 mm/min, the molten pool will towing substrate rewinding and floating, which leads to the severe segregation of the cladding and decrease its formability and wear resistance.

参考文献

[1] ZHU Hao;ZHU Liang;CHEN Jianhong.Damage and fracture mechanism of 6063 aluminum alloy under three kinds of stress states[J].稀有金属(英文版),2008(01):64-69.
[2] 董世运;马运哲;徐滨士;韩文政.激光熔覆材料研究现状[J].材料导报,2006(6):5-9,13.
[3] Dubourg L.;Hlawka F.;Cornet A..Study of aluminium-copper-iron alloys: application for laser cladding[J].Surface & Coatings Technology,20020(0):329-332.
[4] 林日东;黄安国.铝合金表面激光熔覆Al-Y-Ni合金涂层的组织与性能研究[J].电焊机,2011(6):1-5.
[5] 于玮 .激光熔覆制备铝基非晶涂层的研究[D].华中科技大学,2012.
[6] 陈晓娟 .铝合金表面激光熔覆Al-Y-Ni合金涂层的组织与性能研究[D].华中科技大学,2007.
[7] B.J. Yang;J.H. Yao;J. Zhang.Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength[J].Scripta materialia,20094(4):423-426.
[8] 何世文;刘咏;郭晟.气雾化制备非平衡态铝合金粉末冷却速度的计算[J].稀有金属材料与工程,2009(z1):353-356.
[9] 梁工英;黄俊达;苏俊义.激光熔覆层中非晶组织对摩擦学的影响[J].中国激光,2000(10):953-957.
[10] 王维;刘奇;杨光;钦兰云;薛雄.电磁搅拌作用下激光熔池电磁场、温度场和流场的数值模拟[J].中国激光,2015(2):40-47.
[11] 袁庆龙;冯旭东;曹晶晶;苏志俊.激光熔覆镍基合金涂层微观组织研究[J].中国激光,2010(8):2116-2120.
[12] 李刚;刘丽;侯俊英;水东莉;陈永君;唐海鹏.激光熔覆Ni-Zr-Nb-Al非晶复合涂层组织结构及性能研究[J].激光技术,2011(2):185-188.
[13] 刘铭坤;汤海波;方艳丽;张述泉;刘栋;王华明.钛合金表面激光熔覆TiC/Ti-Ti2Co涂层耐磨性[J].激光技术,2011(4):444-447,452.
[14] 冯淑容;张述泉;王华明.钛合金激光熔覆硬质颗粒增强金属间化合物复合涂层耐磨性[J].中国激光,2012(2):60-65.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%