目的:设计一种以降低表面热辐射为主的疏导式热控结构,通过对疏导式热控结构的热性能进行仿真计算与试验,探讨其温度场分布影响因素。方法采用FLUENT软件,仿真分析了该热控结构在热源200℃时,隔热材料和通风条件对流场及温度场的影响。采用5 mm厚、导热系数为0.036 W/(m·K)的隔热材料和1 mm厚的纯铝板,制备了总厚度为100 mm的疏导式热控结构,测试在热源200、300、400℃时,距隔热层表面0、5、15、35、55、75、95 mm平面内和热控结构外表面的温度,并与仿真计算结果进行了对比。结果在不通风条件下,热源为200、300、400℃时,热控结构外表面的温度分别为48.1、66.8、87.9℃;在5 m/s通风条件下,热源为200、300、400℃时,热控结构外表面的温度分别为36.5、39.8、47.4℃。结论仿真计算获得的温度值与实测值一致,疏导空间内部受热量辐射的影响随高度的增大逐渐减小,适当采用气体对流机制能够显著降低疏导空间和热控结构外表面的温度。
ABSTRACT:Objective To design a leading thermal control structure dedicated primarily to decreasing surface thermal radi-ation.Methods The effect of thermal insulation materials and ventilation on its flow field and temperature field was investigated by using FLUENT software when the temperature of heat source was 200℃. The 100 mm thick leading thermal control struc-ture was prepared by combining 5 mm thick thermal insulation materials with the thermal conductivity of 0.036 W/(m·K) and 1mm thick pure aluminium plates. The temperature of thermal control structure on its outside surface and different altitude planes with distances of 0 mm, 5 mm, 15 mm, 35 mm, 55 mm,75 mm and 95 mm from that was measured when the temperature of heat source was 200℃, 300℃ and 400℃ respectively. Then the test results were compared with those of simulation. ResultsUnder the condition of without ventilation, the temperature on the outside surface of thermal control structure was 48.1℃, 66.8℃ and 87.9℃ when the temperature of heat source was 200℃, 300℃ and 400℃ respectively. With a wind speed of 5 m/s, the temperature on the outside surface of thermal control structure was 36.5℃, 39.8℃and 47.4℃ when the temperature of heat source was 200℃, 300℃ and 400℃ respectively.Conclusion It is indicated that the results of simulation are basically consistent with the measured values. The influence of thermal radiation on the leading space inside the thermal control structure can decrease when height increases. With proper ventilation, the temperature on the outside surface of thermal control structure and in the leading space can be significantly reduced.
参考文献
[1] | 马忠辉;孙秦;王小军;杨勇.热防护系统多层隔热结构传热分析及性能研究[J].宇航学报,2003(5):543-546. |
[2] | 马忠辉 .可重复使用运载器热防护系统性能分析研究[D].西北工业大学,2004. |
[3] | 李德富;杨炜平;刘小旭.多层隔热材料传热特性研究现状及展望[J].航天器环境工程,2013(3):302-309. |
[4] | Markus Spinnler;Edgar R.F. Winter;Raymond Viskanta.Studies on high-temperature multilayer thermal insulations[J].International Journal of Heat and Mass Transfer,20046/7(6/7):1305-1312. |
[5] | 江经善.多层隔热材料及其在航天器上的应用[J].宇航材料工艺,2000(04):17-25. |
[6] | 吴国庭.统一热管理的疏导式防热系统概念研究[J].航天器工程,2009(04):13-19. |
[7] | 陈立明;戴政;谷宇;方岱宁.轻质多层热防护结构的一体化优化设计研究[J].力学学报,2011(2):289-295. |
[8] | 喻磊 .高温热管在疏导式热防护结构中应用的机理研究[D].国防科学技术大学,2012. |
[9] | 马忠辉;孙秦;王小军;杨勇.TPS多层隔热结构数值分析方法研究[J].导弹与航天运载技术,2003(6):14-18. |
[10] | 李建峰 .多层防隔热系统热力耦合计算机模拟[D].哈尔滨工业大学,2012. |
[11] | 马玉娥 .可重复使用运载器热防护系统热/力耦合数值计算研究[D].西北工业大学,2005. |
[12] | SUN Bing;ZHANG Tao.Numerical simulation research on surface radiation heat calculation of spacecraft in orbit whole course[J].航空动力学报,2010(10):2229-2237. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%