欢迎登录材料期刊网

材料期刊网

高级检索

采用两种不同烷基链长的硅烷偶联剂(十六烷基三甲氧基硅烷和丙基三甲氧基硅烷)改性氧化镁(MgO)纳米粒子.红外光谱(FTIR)和固体核磁(13C NMR)证明硅烷偶联剂成功接枝到MgO粒子表面,TEM图显示烷基硅烷表面改性的MgO在有机溶剂中分散更好.采用熔融共混法制备了MgO含量为1%的MgO/LDPE和MgO/XLPE纳米复合材料,研究MgO纳米粒子对纳米复合材料力学性能、热性能以及空间电荷分布的影响.结果表明:MgO可在一定程度上提高LDPE和XLPE的初始热分解温度,并可明显抑制材料中的空间电荷.XLPE、MgO/XLPE、MgO-C3/XLPE和MgO-C16/XLPE的平均体电荷密度分别为7.1 C/m3、2.4 C/m3、1.3 C/m3和2.0 C/m3.

MgO nanoparticles were modified by two silane coupling agents with different alkyl chain lengths (hexadecyltrimethoxysilane and propyltrimethoxysilane). Fourier transform infrared (FT-IR) spectra and solid-state 13C nuclear magnetic resonance (NMR) spectra were employed to confirm that the silane coupling agents had been grafted on the MgO nanoparticles surface successfully. TEM images showed that the modified MgO had better distribution in the organic solvent. The low density polyethylene (LDPE) and cross-linked polyethylene (XLPE) based nanocomposites with 1% MgO nanoparticles were prepared by melt blending, and the effect of MgO nanoparticles on the mechanical, thermal properties, and space charge distribution of the nanocomposites were studied. The results reveal that the addtion of MgO can increase the initial thermal decomposition temperature of LDPE and XLPE, and suppress the space charge in materials obviously. The average space charge density of XLPE, MgO/XLPE, MgO-C3/XLPE, and MgO-C16/XLPE is 7.1 C/m3, 2.4 C/m3, 1.3 C/m3, and 2.0 C/m3 respectively.

参考文献

[1] 梁旭明;张平;常勇.高压直流输电技术现状及发展前景[J].电网技术,2012(04):1-9.
[2] Boukezzi, L.;Boubakeur, A..Prediction of mechanical properties of XLPE cable insulation under thermal aging: neural network approach[J].IEEE transactions on dielectrics and electrical insulation: A publication of the IEEE Dielectrics and Electrical Insulation Society,20136(6):2125-2134.
[3] Tracey L. Hanley;Robert P. Burford;Robert J. Fleming;Kenneth W. Barber.A general review of polymeric insulation for use in HVDC cables[J].IEEE Electrical Insulation Magazine,20031(1):13-24.
[4] Smedberg A;Hjertberg T;Gustafsson B.The role of entanglements in network formation in unsaturated low density polyethylene[J].Polymer: The International Journal for the Science and Technology of Polymers,200414(14):4867-4875.
[5] 周湶;伍能成;廖瑞金;李剑;伍科;曹立平.不同交联程度交联聚乙烯的空间电荷特征[J].高电压技术,2013(2):294-301.
[6] 刘晨阳;郑晓泉.聚乙烯绝缘材料空间电荷研究方法综述[J].绝缘材料,2014(5):10-15.
[7] Fuqiang Tian;Qingquan Lei;Xuan Wang;Yi Wang.Effect of deep trapping states on space charge suppression in polyethylene/ZnO nanocomposite[J].Applied physics letters,201114(14):142903-1-142903-3.
[8] 吴锴;陈曦;王霞;屠德民.高压直流电缆用纳米复合聚乙烯的研究[J].绝缘材料,2010(4):1-2,10.
[9] 王雅群;尹毅;李旭光;蔡川.纳米MgO掺杂聚乙烯中空间电荷行为的研究[J].电线电缆,2009(3):20-23.
[10] Zhang, Ling;Zhou, Yuanxiang;Huang, Meng;Sha, Yanchao;Tian, Jihuan;Ye, Qing.Effect of Nanoparticle Surface Modification on Charge Transport Characteristics in XLPE/SiO2 Nanocomposites[J].IEEE transactions on dielectrics and electrical insulation: A publication of the IEEE Dielectrics and Electrical Insulation Society,20142(2):424-433.
[11] 钟琼霞;兰莉;吴建东;史文祥;尹毅.不同表面处理剂对纳米MgO/LDPE空间电荷行为的影响[J].高电压技术,2014(9):2668-2677.
[12] Xingyi Huang;Pingkai Jiang;Yi Yin.Nanoparticle surface modification induced space charge suppression in linear low density polyethylene[J].Applied physics letters,200924(24):242905-1-242905-3.
[13] Wang X.;Murata K.;Tanaka Y.;Takada T.;Yoshimura N..Space-charge characteristics in polyethylene[J].Journal of Applied Physics,19983(3):1546-1550.
[14] G. C. Montanari;C. Laurent;G. Teyssedre;A. Campus;U. H. Nilsson.From LDPE to XLPE: Investigating the Change of Electrical Properties. Part I: Space Charge, Conduction and Lifetime[J].IEEE transactions on dielectrics and electrical insulation: A publication of the IEEE Dielectrics and Electrical Insulation Society,20053(3):438-446.
[15] Bressy, C.;Ngo, V.G.;Ziarelli, F.;Margaillan, A..New insights into the adsorption of 3-(trimethoxysilyl)propylmethacrylate on hydroxylated ZnO nanopowders[J].Langmuir: The ACS Journal of Surfaces and Colloids,20126(6):3290-3297.
[16] 刘晓东;郑晓泉;屠德民;张要强.交联工艺对交联聚乙烯中空间电荷的影响[J].绝缘材料,2005(5):22-26.
[17] G. Mazzanti;G. C. Montanari;J. M. Alison.A space-charge based method for the estimation of apparent mobility and trap depth as markers for insulation degradation-theoretical basis and experimental validation[J].IEEE transactions on dielectrics and electrical insulation: A publication of the IEEE Dielectrics and Electrical Insulation Society,20032(2):187-197.
[18] T. Tanaka;G. C. Montanari;R. Mulhaupt.Polymer Nanocomposites as Dielectrics and Electrical Insulation-perspectives for Processing Technologies, Material Characterization and Future Applications[J].IEEE transactions on dielectrics and electrical insulation: A publication of the IEEE Dielectrics and Electrical Insulation Society,20045(5):763-784.
[19] Tanaka Y.;Chen G.;Zhao Y.;Davies A.E.;Vaughan A.S.;Takada T..Effect of additives on morphology and space charge accumulation in low density polyethylene[J].IEEE transactions on dielectrics and electrical insulation: A publication of the IEEE Dielectrics and Electrical Insulation Society,20031(1):148-154.
[20] Tatsuo Takada;Yuji Hayase;Yasuhiro Tanaka;Tatsuki Okamoto.Space Charge Trapping in Electrical Potential Well Caused by Permanent and Induced Dipoles for LDPE/MgO Nanocomposite[J].IEEE transactions on dielectrics and electrical insulation: A publication of the IEEE Dielectrics and Electrical Insulation Society,20081(1):152-160.
[21] 尹毅;屠德民;李明;李忠华.用等温电流法研究自由基清除剂的作用机理--聚合物电老化陷阱理论的实验验证[J].中国电机工程学报,2000(3):13-15,25.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%