高分子材料科学与工程, 2016, 32(10): 177-182. doi: 10.16865/j.cnki.1000-7555.2016.10.031
自修复涂层材料研究进展
李海燕
1,
, 崔业翔
2,
, 王晴
<{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"基于统计学方法和随机理论,利用动电位极化曲线和恒电位测试技术研究静水压力对Fe-20Cr合金点蚀行为的影响。随着静水压力的增加, Fe-20Cr合金的击破电位降低,维钝电流密度减小,耐蚀性能变差。静水压力对Fe-20Cr合金点蚀产生和点蚀生长的研究表明:高的静水压力下,亚稳态点蚀发生的频率加快且向稳态点蚀发展的倾向增大,从而导致点蚀的产生速度加快,点蚀的孕育期缩短,但点蚀的产生机制并没有发生改变;静水压力的增加增大了点蚀的生长概率,高压下产生的点蚀更容易成长为大的腐蚀坑。","authors":[{"authorName":"杨延格崔中雨陈杰曹靖涛张涛邵亚薇孟国哲王福会","id":"c192c519-34f9-43a6-ae66-b5d46143c0a0","originalAuthorName":"杨延格崔中雨陈杰曹靖涛张涛邵亚薇孟国哲王福会"}],"categoryName":"|","doi":"","fpage":"415","id":"9bbe7861-bdf1-4291-b779-cf4920d4c58a","issue":"6","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"d2b00321-0d81-4eb7-89fc-0025a17c360f","keyword":"静水压力","originalKeyword":"静水压力"},{"id":"e01f3a4a-9acc-4d1b-a5ba-dd9fe6229ac8","keyword":"corrosion","originalKeyword":"corrosion"},{"id":"a8d86446-36e8-44a3-81d1-4fdd0fd42992","keyword":"stochastic theory","originalKeyword":"stochastic theory"},{"id":"3740d17b-ad86-4af0-ac07-88803ebc48e3","keyword":"Fe-20Cr","originalKeyword":"Fe-20Cr"},{"id":"0df801ce-f90c-4c45-903e-da2e00ba013a","keyword":"deep ocean","originalKeyword":"deep ocean"}],"language":"zh","publisherId":"1005-4537_2009_6_5","title":"静水压力对Fe-20Cr合金点蚀行为的影响","volume":"29","year":"2009"},{"abstractinfo":"采用动电位极化、电化学阻抗和Mott-Schottky等电化学测试方法,研究了在室温、3.5% NaCl溶液条件下,静水压力对纯镍的钝化膜性能的影响。结果表明:随着静水压力的增加,纯镍的腐蚀速度增大,阴极过程保持不变,阳极过程加速。静水压力对阳极过程的影响:一方面提高纯镍钝化膜的抗腐蚀能力,使钝化膜中的受主密度减小,空间电荷层的厚度增加;另一方面,恶化了纯镍的钝化膜腐蚀抗腐蚀能力,使钝化膜变得不稳定,并且表现出较高的化学溶解速度和空穴扩散系数。静水压力对纯镍钝化膜的恶化作用比提高作用对阳极过程的影响更大,导致纯镍的抗腐蚀能力随着静水压力的提高而减小。","authors":[{"authorName":"刘斌丛园张涛邵亚薇孟国哲王福会","id":"884d32d6-2efe-49c0-a828-3b2121d3f6ef","originalAuthorName":"刘斌丛园张涛邵亚薇孟国哲王福会"}],"categoryName":"|","doi":"","fpage":"5","id":"4efa493d-5b13-4f7a-a479-5d7807125436","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"d9f1b8dd-dca4-488d-8a23-ce3453107eb8","keyword":"静水压力","originalKeyword":"静水压力"},{"id":"24888aec-3595-4293-8112-274108585431","keyword":"corrosion","originalKeyword":"corrosion"},{"id":"de8f603d-de96-42a2-bd52-bc38b78feee0","keyword":"nickel","originalKeyword":"nickel"},{"id":"0ee5e7ab-a16f-4e54-ab66-f9a7a2d3657e","keyword":"deep ocean","originalKeyword":"deep ocean"},{"id":"b7b86cc6-111e-41f8-86c6-a943cea06bea","keyword":"passive film","originalKeyword":"passive film"}],"language":"zh","publisherId":"1002-6495_2009_1_19","title":"深海环境下静水压力对纯镍腐蚀行为的影响","volume":"21","year":"2009"},{"abstractinfo":"采用动电位极化、电化学阻抗和Mort-Schottky等电化学测试方法,研究了在室温、3.5% NaCl溶液条件下,静水压力对纯镍的钝化膜性能的影响.结果表明:随着静水压力的增加,纯镍的腐蚀速度增大,阴极过程保持不变,阳极过程加速.静水压力对阳极过程的影响:一方面提高纯镍钝化膜的抗腐蚀能力,使钝化膜中的受主密度减小,空间电荷层的厚度增加;另一方面,恶化了纯镍的钝化膜腐蚀抗腐蚀能力,使钝化膜变得不稳定,并且表现出较高的化学溶解速度和空穴扩散系数.静水压力对纯镍钝化膜的恶化作用比提高作用对阳极过程的影响更大,导致纯镍的抗腐蚀能力随着静水压力的提高而减小.","authors":[{"authorName":"刘斌","id":"67d53883-ef90-400b-bdef-7284605219e6","originalAuthorName":"刘斌"},{"authorName":"丛园","id":"9df9d013-32ef-412a-8bc9-91e5bc2d7129","originalAuthorName":"丛园"},{"authorName":"张涛","id":"7383d8e1-8d66-4b6d-9326-7728eb997167","originalAuthorName":"张涛"},{"authorName":"邵亚薇","id":"ecf21d52-d60b-40b3-8eb9-12ceb0315c5d","originalAuthorName":"邵亚薇"},{"authorName":"孟国哲","id":"5775170f-3d7a-4d35-b226-78025f7b66dc","originalAuthorName":"孟国哲"},{"authorName":"王福会","id":"db9c031b-132e-4f0c-9c3b-f1c415317420","originalAuthorName":"王福会"}],"doi":"10.3969/j.issn.1002-6495.2009.01.002","fpage":"5","id":"52383069-0533-4510-b06d-af4315a0d193","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"d0eff798-188d-4deb-813a-288877a75e4b","keyword":"静水压力","originalKeyword":"静水压力"},{"id":"2b7699db-d336-46f5-951b-3624e61b4a93","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"a93833ed-925c-4525-9162-b2e096ae8e96","keyword":"纯镍","originalKeyword":"纯镍"},{"id":"c93ce281-69eb-4ac8-b7bc-dac62fcf1836","keyword":"深海","originalKeyword":"深海"},{"id":"48caa1bf-8fb3-4c40-aa1b-8b8ce60d10fc","keyword":"钝化膜","originalKeyword":"钝化膜"}],"language":"zh","publisherId":"fskxyfhjs200901002","title":"深海环境下静水压力对纯镍腐蚀行为的影响","volume":"21","year":"2009"},{"abstractinfo":"深海具有特殊的腐蚀环境特点,需要研究涂料对深海工程结构物的防护性。利用自制的深海环境模拟试验装置,分别在0.1MPa和3.5MPa静水压力条件下,对典型涂层吸水率、附着力、交流阻抗特性和微观形貌进行了对比研究。结果表明:与0.1MPa海水浸泡相比,在3.5MPa静水压力条件下涂层具有不同的吸水特征;涂层与金属基体间的附着力逐渐降低,涂层防护性能的劣化过程明显加快。","authors":[{"authorName":"方志刚","id":"7dd0a276-9d14-4467-b7e5-836b2cf8f7fb","originalAuthorName":"方志刚"},{"authorName":"刘斌","id":"06724943-b1a0-41fb-a196-f82681cea3c0","originalAuthorName":"刘斌"},{"authorName":"王涛","id":"7ecec562-0d86-4d90-8c86-2737cc4f781f","originalAuthorName":"王涛"}],"doi":"","fpage":"51","id":"d61a9681-a572-450f-a30a-91b0407c13fb","issue":"12","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"77311c19-f706-49a0-8eec-87f6a3694260","keyword":"涂料","originalKeyword":"涂料"},{"id":"79653537-2f4c-49a4-819b-5ead00c76cf9","keyword":"深海","originalKeyword":"深海"},{"id":"b47adaa9-80fc-41b0-b90c-75df0094cb1c","keyword":"静水压力","originalKeyword":"静水压力"},{"id":"488efa6d-dce0-4830-b8cf-21bdbab712cc","keyword":"防护性能","originalKeyword":"防护性能"}],"language":"zh","publisherId":"clbh201212018","title":"静水压力对深海工程涂料防护性能的影响","volume":"45","year":"2012"},{"abstractinfo":"研究了静水压力对粘弹性功能梯度材料与结构的力学性能的影响.基于粘弹性材料Boltzmanna积分型本构关系式,推导了静水压力作用下粘弹性功能梯度材料的本构关系,并假设其蠕变模量在结构厚度方向上连续变化,组分材料的体积分数呈幂律分布;在此基础上,研究了静水压力引起的粘弹性功能梯度结构横截面材料属性分布、厚度、刚度及功能梯度结构弯曲、屈曲和振动特性的变化,给出了恒定静水压力作用下,不同体积分数指数的粘弹性功能梯度结构厚度与刚度随时间变化的曲线.计算结果表明,在静水压力作用下,粘弹性功能梯度结构的厚度和刚度都发生了变化,并最终导致其弯曲、屈曲和振动性能都发生了较大的变化.","authors":[{"authorName":"李华东","id":"a0c28d79-3256-411c-8de9-2a87b066dbd9","originalAuthorName":"李华东"},{"authorName":"朱锡","id":"e4c7699b-3c56-46d0-8503-8c5e973f4ad9","originalAuthorName":"朱锡"},{"authorName":"梅志远","id":"bb172599-131b-4647-a771-387d95f850a1","originalAuthorName":"梅志远"},{"authorName":"张颖军","id":"f2ac6d16-6847-4af0-8d7d-6fbe5ad4d4e9","originalAuthorName":"张颖军"}],"doi":"","fpage":"445","id":"d82fdbe8-aa58-4bd6-ae16-bd00319a123b","issue":"z3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"fd3f8039-3146-424d-a5eb-bf6127210682","keyword":"功能梯度材料","originalKeyword":"功能梯度材料"},{"id":"0e15aa10-d03b-4101-bdf9-55cc72c01932","keyword":"功能梯度结构","originalKeyword":"功能梯度结构"},{"id":"e6274c66-6565-40c6-9afa-759031a6d04f","keyword":"静水压力","originalKeyword":"静水压力"},{"id":"ef341921-497d-4b24-9b58-93fc5fa8aa75","keyword":"粘弹性","originalKeyword":"粘弹性"},{"id":"700b096f-b005-420f-9823-f9d7afc9780f","keyword":"蠕变","originalKeyword":"蠕变"}],"language":"zh","publisherId":"gncl2010z3017","title":"静水压力对粘弹性功能梯度结构力学性能的影响研究","volume":"41","year":"2010"},{"abstractinfo":" 利用电化学测量方法测量纯镍在3.5% NaCl溶液中,静水压力为0 MPa和8 MPa条件下的点蚀击破电位和孕育时间.分析得到纯镍在不同静水压力下点蚀击破电位的理论精确值,利用随机分析方法分析纯镍在静水压力下的点蚀机制.实验结果表明静水压力对纯镍的点蚀过程有着重要的影响,在静水压力下纯镍的点蚀行为和机制发生了改变.在较高的静水压力下,纯镍点蚀产生的敏感性增强,点蚀击破电位Ecritical明显降低;纯镍点蚀诱导时间也变短,其点蚀产生的机制发生了改变;在较高静水压力下,纯镍表面的钝化膜活性增强,恶化了纯镍的耐蚀能力.","authors":[{"authorName":"刘斌","id":"a9e63efe-5796-40e1-a195-8d594614e974","originalAuthorName":"刘斌"},{"authorName":"张杰","id":"66af4660-74b9-4189-967d-ae8cb4fad94e","originalAuthorName":"张杰"},{"authorName":"张涛","id":"f10e51ca-41f8-462f-81c2-bfdc4c390c5e","originalAuthorName":"张涛"},{"authorName":"邵亚薇","id":"d2e0e9e5-f2df-4b3b-a66f-9c8d54966ea2","originalAuthorName":"邵亚薇"},{"authorName":"孟国哲","id":"25f1cbed-aa8b-4130-a867-33c7276a05d7","originalAuthorName":"孟国哲"},{"authorName":"王福会","id":"7cf5f6fa-dbf5-42c0-9a3d-513883d2aeb9","originalAuthorName":"王福会"}],"categoryName":"|","doi":"","fpage":"85","id":"68ce2bfa-630e-44aa-8113-f8d0e96c0399","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"0907f8db-483a-4b33-a360-e6426be7dab5","keyword":"静水压力","originalKeyword":"静水压力"},{"id":"e4c6d9ca-dad0-45f6-973e-428310565d63","keyword":"nickel","originalKeyword":"nickel"},{"id":"bfb9fb10-b7c2-4afc-ac07-fc6b2d32408e","keyword":"deep ocean","originalKeyword":"deep ocean"},{"id":"da587620-3663-4120-9774-85f80785058c","keyword":"itting","originalKeyword":"itting"},{"id":"73cfaf65-88b6-43d2-8b46-01c7f47ea856","keyword":"stochastic analysis","originalKeyword":"stochastic analysis"}],"language":"zh","publisherId":"1002-6495_2010_2_14","title":"深海环境对纯镍腐蚀行为的影响Ⅱ -利用随机分析方法研究纯镍在静水压力下的点蚀行为","volume":"22","year":"2010"},{"abstractinfo":"利用电化学测量方法测量纯镍在3.5%NaCl溶液中,静水压力为0 MPa和8 MPa条件下的点蚀击破电位和孕育时间.分析得到纯镍在不同静水压力下点蚀击破电位的理论精确值,利用随机分析方法分析纯镍在静水压力下的点蚀机制.实验结果表明静水压力对纯镍的点蚀过程有着重要的影响,在静水压力下纯镍的点蚀行为和机制发生了改变.在较高的静水压力下,纯镍点蚀产生的敏感性增强,点蚀击破电位E_(critical)明显降低;纯镍点蚀诱导时间也变短,其点蚀产生的机制发生了改变;在较高静水压力下,纯镍表面的钝化膜活性增强,恶化了纯镍的耐蚀能力.","authors":[{"authorName":"刘斌","id":"d4c322fc-44ce-493c-ad8b-81d58249f5ba","originalAuthorName":"刘斌"},{"authorName":"张杰","id":"73165818-89e0-4a61-afca-c59d18521f61","originalAuthorName":"张杰"},{"authorName":"张涛","id":"feb00925-09c3-4cd1-97ef-34b9056b5891","originalAuthorName":"张涛"},{"authorName":"邵亚薇","id":"8640bafa-dfe6-429d-9872-4319c0315cb0","originalAuthorName":"邵亚薇"},{"authorName":"孟国哲","id":"a7eaaa26-9277-4286-9592-ebb03b463bf9","originalAuthorName":"孟国哲"},{"authorName":"王福会","id":"19d5de14-d748-43b4-adb7-9cc3fb7225f6","originalAuthorName":"王福会"}],"doi":"","fpage":"85","id":"38625e6d-43bc-43ca-9f49-e5349eb49b81","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"373daab8-1df3-4ea6-95da-5bd850402e96","keyword":"静水压力","originalKeyword":"静水压力"},{"id":"f11de63c-39d8-44b2-8a37-11f12ef67297","keyword":"纯镍","originalKeyword":"纯镍"},{"id":"19718afa-f60e-49b8-b202-1951fdc932d5","keyword":"深海","originalKeyword":"深海"},{"id":"5dcc3ba6-15d5-45ed-a33c-c6dca9104052","keyword":"点蚀","originalKeyword":"点蚀"},{"id":"f4ba4f2b-8b75-4c4d-9a3f-f8fb839bd235","keyword":"随机分析","originalKeyword":"随机分析"}],"language":"zh","publisherId":"fskxyfhjs201002002","title":"深海环境对纯镍腐蚀行为的影响Ⅱ-利用随机分析方法研究纯镍在静水压力下的点蚀行为","volume":"21","year":"2010"},{"abstractinfo":" 通过腐蚀速率的测量和腐蚀形貌的SEM观察, 结合点蚀形态的统计分析和点蚀内部及周围应力分布的有限元(FE)分析, 研究了静水压力和预加载拉伸应力对新型Ni-Cr-Mo-V高强钢在模拟深海环境中的腐蚀行为的影响. 结果表明, 随静水压力和预应力的升高, Ni-Cr-Mo-V高强钢的腐蚀速率增大, 表现在点蚀的萌生、发展和合并过程. 静水压力促进了点蚀微孔的萌生和在高强钢表面的随机分布. 静水压力和预应力在点蚀的生长过程中表现出了交互作用, 这在高预应力水平下更加显著. 静水压力以促进点蚀沿平行于表面的生长为主, 预应力是使点蚀深度增大的要素. 点蚀易于沿垂直于预应力方向合并. 随着静水压力和预应力的升高, 点蚀径深比增大, Ni-Cr-Mo-V高强钢向均匀腐蚀转变.