基于"有效短裂纹准则",用复型研究了1Crl8Ni9Ti不锈钢管道焊缝金属光滑试样表面的短裂纹萌生、扩展与交互作用行为.结果表明:有效短裂纹(ESFCs)萌生于δ铁素体与奥氏体基体的交界处.ESFCs扩展具有明显微观结构短裂纹(MSC)和物理短裂纹(PSC)两阶段特征.主导有效短裂纹(DESFC)行为是ESFCs交互作用的结果,适于表征短裂纹行为.DESFC扩展率的分散性与ESFCs密度的分散性有关,说明DESFC裂尖前沿扩展条件的差异及其演化是DESFC随机扩展行为的本质原因.这一差异也是材料疲劳寿命和循环应力-应变响应存在分散性的本质原因.
参考文献
[1] | Hyspecky P, Strnadel B. Fatigue Fract Engng Mater . Struct, 1992; 15:845 |
[2] | Polak J, Liskutin P. Fatigue Fract Engng Mater Struct,1990; 13:119 |
[3] | Vasek A, Polak J. Fatigue Fract Engng Mater Struct,1991; 14:193 |
[4] | Obrtlik K, Polak J, Hajek M, Vasek A. Int J Fatigue, 1997;19:471 |
[5] | Goto M. Fatigue Fract Engng Mater Struct, 1991; 14:833 |
[6] | Goto M, Knowles D M. Eng Fract Mecha, 1998; 60:1 |
[7] | Suh C M, Lee J J, Kang Y G. Fatigue Fract Engng MaterStruct, 1990; 13:487 |
[8] | Beretta S, Clerici P. Fatigue Fract Engng Mater Struct,1996; 19:1107 |
[9] | Dowling N E. In: ASTM eds. Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth,Philadelphia: American Society for Testing and Materials, 1977:97 |
[10] | Akiniwa Y, Tanaka K, Matsui E. Mater Scie Engng, 1988;104A: 105 |
[11] | Goto M. Fatigue Fract Engng Mater Struct, 1994; 17:635 |
[12] | Goto M. Fatigue Fract Engng Mater Struct, 1992; 15:953 |
[13] | Goto M. Fatigue Fract Engng Mater Struct, 1993; 16:795 |
[14] | Zhao Y X. Ph D thesis. Chengdu: Southwest Jiaotong University, 1998:27(赵永翔.博士学位论文.成都:西南交通大学,1998:67) |
[15] | Zhao Y X, Gao Q, Wang J N. Fatigue Fract Engng Mater Struct, 1999; 22:459 |
[16] | Zhao Y X, Gao Q, Wang J N. Fatigue Fract Engng Mater Struct, 1999, 22:469 |
[17] | Zhao Y X, Gao Q, Wang J N. Acta Metall Sin, 2000; 36:(赵永翔,高庆,王金诺.金属学报,2000;36:) |
[18] | Gao N, Brown M W, Miller K J. Fatigue Fract Engng Mater Struct, 1995; 18:1423 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%