根据Mandelbrot的分形几何概念,建立了流体在粗糙表面进行化学反应的动力学模型.该模型的无量纲表达式为1-(1-X)1-βDs/3=t/t1,式中x为转化率,β为浓度级数,Ds为分形维数,t1为完全化学反应时间.该模型适用于描述焦炭气化反应速率过程,相应的表观激活能为54.814 kJ/moL与传统的收缩核模型相比,分形模型与实验数据的符合程度更好、物理意义更清晰.传统的收缩核模型只是分形模型在规整几何条件下的特殊形式.
参考文献
[1] | Mandelbrot B B. The Fractal Geometry of Nature. San Francisco: W. H. Freeman, 1982:109 |
[2] | Li H Q, Cheng G Y. Fractals and Fractal Dimensions.Chengdu: Sichuan Education Press, 1990:52(李后强,程光钺.分形与分维.成都:四川教育出版社,1990:52) |
[3] | Novak M M. Fractals in The Natural and Applied Sciences. Amsterdam: North-Holland, 1994:1 |
[4] | Xin H W. Reaction Kinetics in Fractal Media. Shanghai:Shanghai Scientific and Technological Education Publishing House, 1997:17(辛厚文.分形介质反应动力学.上海:上海科技教育出版社,1997:17) |
[5] | Xie H P. Introduction to Fractal-Rock Mechanics. Beijing: Science Press, 1997:93(谢和平.分形--岩石力学导论.北京:科学出版社,1997:93) |
[6] | Fu Y N. Blast Furnace Cokes. Beijing: Metallurgical Industry Press, 1995:13(傅永宁.高炉焦炭.北京:冶金工业出版社,1995:13) |
[7] | Ma X H, Huang T, Wei L. J Chem Ind Eng, 1991; 42:691(马兴华,黄滔,尉俐.化工学报,1991;42:691) |
[8] | Tao D P. Thermochim Acta, 1999; 338:125 |
[9] | Tao D P. Nonferrous Met Q, 1994; 46:51(陶东平.有色金属(季刊),1994;46:51) |
[10] | Tao D P. Acta Metall Sin (Engl Lett), 2000; 13:877 |
[11] | Szekely J, Evans J W, Sohn H Y. Gas-Solid Reactions.New York: Academic Press, 1976:74 |
[12] | Zhang Y F, Xie K C, Ling D Q. J Fuels Chem, 1991; 19:359(张永发,谢克昌,凌大琦.燃料化学学报,1991;19:359) |
[13] | Bhatia S K, Perlmutter D D. AIChE J, 1980; 26:379 |
[14] | Bhatia S K, Perlmutter D D. AIChE J, 1981; 27:247 |
[15] | Bhatia S K. AIChE J, 1987; 33:1707 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%