{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"分别采用常规焙烧还原(C)、常规焙烧与常压高频冷等离子体炬还原相结合(PR),以及常压高频冷等离子体炬直接焙烧还原(PC&R)制备了Ni/γ-Al_2O_3催化剂.通过X射线衍射、H_2-程序升温脱附、CO_2-程序升温脱附、N_2吸附-脱附实验、透射电镜和热重分析等方法对催化剂进行了表征.并考察了其CH_4/CO_2重整反应活性.结果表明,催化剂经等离子体处理后低温活性明显增加.在得到相同CH_4和CO_2转化率情况下,PC&R法制备的催化剂与常规催化剂相比,反应所需温度可以降低50℃.PC&R催化剂上Ni分散度提高了100%,Ni粒子粒径降低了70%.达到5 nm,催化剂的抗积炭性能显著增强.所得催化剂较高的低温活性和抗积炭性能得益于常压高频冷等离子体炬对催化剂前驱体还原速率快,处理时间大为缩短,避免了由于长时间高温焙烧和还原所引起的对载体的烧结和金属Ni的团聚.","authors":[{"authorName":"柴晓燕","id":"4dba2f82-b40b-445b-883f-683de5434568","originalAuthorName":"柴晓燕"},{"authorName":"尚书勇","id":"004da7b5-29bf-4ecf-8bb7-b76b21682acd","originalAuthorName":"尚书勇"},{"authorName":"刘改焕","id":"74e328fa-cdef-4098-8404-c48cdec1bb62","originalAuthorName":"刘改焕"},{"authorName":"陶旭梅","id":"be670c84-a38f-41da-8cc3-727583238d4f","originalAuthorName":"陶旭梅"},{"authorName":"","id":"454faf41-2cea-4f51-a509-6bd31275dfaa","originalAuthorName":"李祥"},{"authorName":"白玫瑰","id":"4f75d0c4-84cb-409f-a479-7487916e8fdc","originalAuthorName":"白玫瑰"},{"authorName":"戴晓雁","id":"3ce25786-b4a7-4df7-98be-295a9edc85c1","originalAuthorName":"戴晓雁"},{"authorName":"印永","id":"37d4a041-c311-4f44-ad6d-a1bdd29b908e","originalAuthorName":"印永祥"}],"doi":"10.3724/SP.J.1088.2010.90945","fpage":"353","id":"1185850d-4bc5-47ab-be40-8f15c62866f0","issue":"3","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"7f9fb4c4-7af6-4d02-8b0f-e0217cf95bec","keyword":"常压高频冷等离子体炬","originalKeyword":"常压高频冷等离子体炬"},{"id":"5dfd2556-b316-43e5-9485-53857144f401","keyword":"镍","originalKeyword":"镍"},{"id":"92e18895-9e80-49ec-9cda-99bbd0a35c61","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"28b2fe91-3af2-458a-a462-e015102e2823","keyword":"负载型催化剂","originalKeyword":"负载型催化剂"},{"id":"e68d9ec4-7028-4e43-ac41-a657cf29b116","keyword":"甲烷","originalKeyword":"甲烷"},{"id":"83d159f7-c3e2-4106-b2e6-c0ab47d9df2f","keyword":"二氧化碳","originalKeyword":"二氧化碳"},{"id":"17ff49d4-e7a6-4248-a655-943f4b3d1c6e","keyword":"重整","originalKeyword":"重整"}],"language":"zh","publisherId":"cuihuaxb201003019","title":"常压高频冷等离子体炬制备的CH_4/CO_2重整用Ni/γ-Al_2O_3催化剂的表征","volume":"31","year":"2010"},{"abstractinfo":"钽金属是一种理想的医用金属材料,能够与人体软/硬组织发生整合.利用化学气相沉积方法,在可控多孔结构的Ti6Al4V合金支架表面沉积涂覆钽金属涂层,使其同时具备理想的三维孔隙结构和力学相容性,以及钽金属优异的生物学性能.研究结果显示,多孔钛合金支架表面涂层前后色泽发生明显变化,涂层后支架呈现钽金属色泽.扫描电镜和XRD分析进一步证明了多孔钛合金支架表面沉积物为钽金属.与美国Zimmer公司生产的多孔钽小梁金属相比,钽涂层多孔钛合金支架具备与人体皮质骨更相似的弹性模量和抗压强度,是一种理想的骨修复替代物.","authors":[{"authorName":"","id":"3543eee7-38c6-4095-b854-5a52f3dbb362","originalAuthorName":"李祥"},{"authorName":"于晓明","id":"7be956f5-6af0-4dbb-8d74-74a556212252","originalAuthorName":"于晓明"},{"authorName":"王成焘","id":"2fb387e1-cdf8-4ebc-bf78-db61b27a97c7","originalAuthorName":"王成焘"},{"authorName":"谭丽丽","id":"d09c73d5-3398-409d-b2de-b97b1223ed36","originalAuthorName":"谭丽丽"},{"authorName":"杨柯","id":"c2081188-5e76-40c1-9f51-1c367b5ff7e6","originalAuthorName":"杨柯"},{"authorName":"罗云","id":"b31bff74-9715-4b2d-9259-b2b2d2b95a7e","originalAuthorName":"罗云"},{"authorName":"张文光","id":"aba642a2-83d9-45a8-9828-cb2bd44e05a3","originalAuthorName":"张文光"}],"doi":"","fpage":"2049","id":"c6255f93-b346-4317-92e3-555ad8a1f478","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"16576f93-40d4-41df-80a3-be852ed16d69","keyword":"电子束熔化成形","originalKeyword":"电子束熔化成形"},{"id":"52553440-77f9-4cbd-9182-8c09a4a23ef1","keyword":"支架","originalKeyword":"支架"},{"id":"3ea6fea8-95de-4197-a1b8-169f6227072e","keyword":"钽涂层","originalKeyword":"钽涂层"},{"id":"ffceaf9c-9c95-4da1-8d8f-ab3ccb3a8e42","keyword":"钛合金","originalKeyword":"钛合金"}],"language":"zh","publisherId":"xyjsclygc201211037","title":"钽涂层多孔钛合金支架的制备与表征","volume":"41","year":"2012"},{"abstractinfo":"分析了南(京)钢电炉厂小方坯表面质量问题及产生的原因,涉及结晶器振动参数、保护渣等.通过优化结晶器振动参数和改善保护渣性能,消除了铸坯的钩形振痕等缺陷,改善了表面质量.","authors":[{"authorName":"孔凡杰","id":"3bf71431-21a7-4304-acf1-e8b116ae3cc8","originalAuthorName":"孔凡杰"},{"authorName":"林国强","id":"2d71ac4b-1af9-4b1b-92f5-9289c1603392","originalAuthorName":"林国强"},{"authorName":"","id":"ab1b4c56-0f24-47f1-ab5b-e485720091a7","originalAuthorName":"李祥"},{"authorName":"王金干","id":"3332f162-c484-4a8b-aeac-e56477178bf6","originalAuthorName":"王金干"},{"authorName":"唐萍","id":"094d5a38-f141-46ec-af2c-0ed37085a149","originalAuthorName":"唐萍"},{"authorName":"漆鑫","id":"581ff876-7d73-4580-a9fb-7a29afae21c4","originalAuthorName":"漆鑫"},{"authorName":"文光华","id":"c46d7ee4-50d1-4a88-b0cc-8205809fc2c8","originalAuthorName":"文光华"}],"doi":"10.3969/j.issn.1001-1447.2005.03.012","fpage":"41","id":"e2173a83-ca79-472f-97ff-eba9e07d199b","issue":"3","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"5ff60f8b-b1f0-468b-ab9e-7767abe738be","keyword":"小方坯","originalKeyword":"小方坯"},{"id":"9d129b45-835e-4b6a-a368-8eed89783083","keyword":"连铸","originalKeyword":"连铸"},{"id":"4f5628c4-66fb-497a-a3a4-77841b4f7e91","keyword":"表面质量","originalKeyword":"表面质量"}],"language":"zh","publisherId":"gtyj200503012","title":"南(京)钢电炉厂小方坯表面质量的研究","volume":"33","year":"2005"},{"abstractinfo":"泡沫金属是近年发展起来的一种新型结构功能材料.对熔体发泡法制备的泡沫铝进行压缩实验,测试了其压缩应力-应变曲线,探讨了压缩变形过程的机理.结果表明,泡沫铝压缩过程具有明显的三阶段变形特征,即弹性段、塑性变形平台段和压实段.压缩性能显示随泡沫铝孔隙率和孔径升高,屈服强度和压实强度下降,且随着颗粒增强剂SiCp的加入,泡沫铝强度得到较大提高.同时,初步建立起理想的孔单元结构模型,推导出孔隙率与孔结构(孔径、壁厚、孔分布)的关系.","authors":[{"authorName":"刘荣佩","id":"97fed1fd-d781-429d-ad26-30c34609ff7f","originalAuthorName":"刘荣佩"},{"authorName":"张国强","id":"ee62aaca-c474-4495-a203-ffaf83dc4d28","originalAuthorName":"张国强"},{"authorName":"张钱珍","id":"37430dcb-7c9d-421e-a79c-a344611780e8","originalAuthorName":"张钱珍"},{"authorName":"张红","id":"a39c7efa-3e58-4b5c-8280-69caa1b42693","originalAuthorName":"张红"},{"authorName":"","id":"0adb6e5b-7720-4894-a9f5-229c84032441","originalAuthorName":"李祥"}],"doi":"","fpage":"133","id":"151dfd79-346c-4496-82a6-1e7250ae01c1","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"61c143d1-c3f6-4d0a-a370-dac914205457","keyword":"泡沫铝","originalKeyword":"泡沫铝"},{"id":"1a3ffb96-25fe-4c06-bdea-013544f02540","keyword":"孔结构参数","originalKeyword":"孔结构参数"},{"id":"cb87cc0f-feb2-49b5-ab8d-719653bd0977","keyword":"单元模型","originalKeyword":"单元模型"},{"id":"73d985cb-936c-4d98-b562-81897dd36a6a","keyword":"压缩性能","originalKeyword":"压缩性能"}],"language":"zh","publisherId":"cldb200711035","title":"泡沫铝孔单元结构模型及压缩特性研究","volume":"21","year":"2007"},{"abstractinfo":"热磁处理后的钴基非晶薄带的磁滞回线具有不对称的特性.这种非对称的磁滞回线特性可以在室温下获得.对该现象的影响因素进行了实验观测和简单的唯象解释,认为热磁处理的非晶薄带基体内形成的磁性偏硬的结晶相是促成这种奇异现象产生的重要因素之一.首先经过系列试验找到一种稳定而可行的热磁处理方法,然后重点讨论经热磁处理的钴基非晶带中微晶相结构特征与热磁条件之间的依赖关系,以获取有潜在实用价值的回线偏置型软磁材料.","authors":[{"authorName":"周磊","id":"55dbaa4a-f6b2-4932-b57b-e3146f1e9a0a","originalAuthorName":"周磊"},{"authorName":"何峻","id":"e94ec34b-4194-4e01-b116-ca5db43cbb6c","originalAuthorName":"何峻"},{"authorName":"","id":"736e6206-7b8f-4b26-8333-b575819541f7","originalAuthorName":"李祥"},{"authorName":"波","id":"a6c063e6-ddc8-4925-ad92-daaf57bfd3f3","originalAuthorName":"李波"},{"authorName":"赵栋梁","id":"a1def270-101a-49ae-93a1-9571d4ee59a3","originalAuthorName":"赵栋梁"}],"doi":"","fpage":"1507","id":"1ba9e444-5eb8-4116-8ecb-897d9ca767af","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"91b2e886-4887-49b1-b854-9eff62ff3ff5","keyword":"热磁退火","originalKeyword":"热磁退火"},{"id":"77d275c9-540f-4075-a1e8-182b0cd34aba","keyword":"非对称磁滞回线","originalKeyword":"非对称磁滞回线"},{"id":"f3ea39de-fed5-4ee5-9a90-58745500bf46","keyword":"微晶相","originalKeyword":"微晶相"},{"id":"6300f977-0e8d-46db-a8b8-b7dc10b4f4e4","keyword":"钴基非晶带","originalKeyword":"钴基非晶带"}],"language":"zh","publisherId":"gncl201009006","title":"具有非对称磁滞回线的钴基非晶带局域晶化表征的研究","volume":"41","year":"2010"},{"abstractinfo":"利用高分子包覆法(Polymer Capping Method)在Si衬底上生长了颗粒分布均匀、致密的纳米ZnO薄膜.样品的形貌和光学性能分别使用SEM,AFM和PL谱进行表征.实验发现,前驱体溶液的pH值对纳米颗粒的分散性和尺寸有很大影响,进而影响紫外发光峰位.在本实验条件下,随纳米颗粒尺寸增大,PL谱的紫外发光峰红移,符合量子尺寸效应.","authors":[{"authorName":"程兴旺","id":"ef013dba-f80f-43b2-8e2c-b93e4f0240fd","originalAuthorName":"程兴旺"},{"authorName":"","id":"1775b3d0-9241-4fd9-a1e1-57beec2386ca","originalAuthorName":"李祥"},{"authorName":"翟斐斐","id":"914798ed-d094-4021-906a-04e95e75ebe5","originalAuthorName":"翟斐斐"},{"authorName":"于宙","id":"e77d1900-8a3d-43c1-80c1-1ea867e22cfd","originalAuthorName":"于宙"},{"authorName":"龙雪","id":"463f9e1c-7d8b-4dab-ac76-1701a5adbf5e","originalAuthorName":"龙雪"},{"authorName":"蔺鹏婷","id":"8735dd9b-50c9-40ae-918f-79f2dd3ea4c1","originalAuthorName":"蔺鹏婷"}],"doi":"10.3969/j.issn.1005-5053.2009.01.019","fpage":"92","id":"2c33b26c-e991-4838-88f1-e46962581d43","issue":"1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"5d36b619-4bf7-449e-a1f8-515868df9b01","keyword":"ZnO纳米颗粒","originalKeyword":"ZnO纳米颗粒"},{"id":"83a988fb-c799-41c8-baa8-891418de0fba","keyword":"高分子覆盖","originalKeyword":"高分子覆盖"},{"id":"b3c62273-01e1-4d40-93ce-4901741a057d","keyword":"光学特性","originalKeyword":"光学特性"}],"language":"zh","publisherId":"hkclxb200901019","title":"ZnO纳米颗粒薄膜的制备与光致发光特性研究","volume":"29","year":"2009"},{"abstractinfo":"采用混酸法对多壁碳纳米管(MWNT)表面进行处理,引入双键后与丙烯酸正丁酯(BA)、乙酸乙烯酯(VAc)共聚,得到表面接枝高分子聚合物的碳纳米管(MWNT - PBV).采用透射电镜(TEM)和热重分析仪(TGA)对其进行表征.将MWNT - PBV与环氧树脂机械共混,制得碳纳米管/环氧树脂复合材料,测试其力学性能、抗静电性,用扫描电镜(SEM)对其断面进行分析.结果表明:碳纳米管表面成功接枝了聚合物;MWNT - PBV在环氧树脂中的分散性优良;复合材料的耐冲击性提高约400%;表面电阻明显降低;抗静电性增强.","authors":[{"authorName":"褚路轩","id":"7b7b6455-9d36-4cf1-9104-a9b6e79cac22","originalAuthorName":"褚路轩"},{"authorName":"姚伯龙","id":"498abd77-9217-40ea-aca7-03750d2d3ebf","originalAuthorName":"姚伯龙"},{"authorName":"","id":"dc98aec0-0881-4313-aca6-ad702cdb88ad","originalAuthorName":"李祥"},{"authorName":"胡张顺","id":"1feb2ee7-6ffd-4c37-ba9f-5209396393e3","originalAuthorName":"胡张顺"}],"doi":"10.3969/j.issn.0253-4312.2012.05.005","fpage":"16","id":"3bda6c11-f639-406c-a52b-f5fa16dcc601","issue":"5","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"410a68d6-dab1-4523-9f55-e42a8b07eb3a","keyword":"多壁碳纳米管","originalKeyword":"多壁碳纳米管"},{"id":"a30be694-acd4-48d6-ac41-0cf8d869eb6c","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"d0248eec-4ebe-43aa-8449-78efccde130f","keyword":"分散性","originalKeyword":"分散性"},{"id":"fa04bf62-da72-45c7-a02f-4a67c9077ae7","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"229865c4-038b-4240-8b34-d8ce5cd867f7","keyword":"抗静电性","originalKeyword":"抗静电性"}],"language":"zh","publisherId":"tlgy201205005","title":"碳纳米管在环氧树脂中的分散及抗静电性研究","volume":"42","year":"2012"},{"abstractinfo":"采用化学方法制备了名义组分为Zn0.993Mn0.007O的Mn掺杂ZnO稀磁半导体材料,并研究了退火温度(Ts=400,600,800℃)对其结构和磁性的影响.结果表明:在退火温度低于600℃条件下,合成的样品为单一纤锌矿结构的ZnO颗粒材料;当退火温度为800℃时,合成的样品中除了纤锌矿结构ZnO外还观察到ZnMnO3第二相的存在.磁性研究表明:经过600℃退火后的样品,其室温铁磁性最强,而经过800℃退火后的样品,其铁磁性几乎消失,并表现为增强的顺磁性.结合对样品的Raman光谱和紫外-可见吸收光谱的分析,表明Mn元素进入了ZnO晶格中并替代了ZnO中的Zn离子. 样品的室温铁磁性是源于(Zn,Mn)O的本征特性,并排除了样品中第二相导致其具有室温铁磁性的可能性.","authors":[{"authorName":"程兴旺","id":"f9477586-1805-4e4b-8add-d18455c9a69b","originalAuthorName":"程兴旺"},{"authorName":"","id":"b20d2a28-326d-4a38-99bb-0ff59ae28c89","originalAuthorName":"李祥"},{"authorName":"于宙","id":"b1a7cf95-fff0-4e36-a964-86d2c9b95d6d","originalAuthorName":"于宙"},{"authorName":"龙雪","id":"b0c330ac-bcb0-4d67-8670-28863801acf5","originalAuthorName":"龙雪"}],"doi":"10.3969/j.issn.1001-4381.2009.01.016","fpage":"70","id":"429f9142-0217-4def-9257-07d46a5d3aa6","issue":"1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"ca9a26c6-be2b-41bb-a030-5e370d49e741","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"eea1bd46-d713-4021-b1a1-3699014c9d24","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"b8611bc0-3f01-4080-9bba-027e5656ebb9","keyword":"稀磁","originalKeyword":"稀磁"}],"language":"zh","publisherId":"clgc200901016","title":"Mn掺杂ZnO稀磁半导体的化学合成及磁性研究","volume":"","year":"2009"},{"abstractinfo":"以RuCl3·3H3O异丙醇溶液为前驱体,采用原位分解法制备了超级电容器用羧基氧化钌薄膜.借助X射线光电子能谱仪、红外光谱仪、电化学分析仪和扫描电镜等手段,研究了薄膜的热分解机理及其电容性能和微观形貌.结果表明:随温度升高,RuCl3·3H3O异丙醇溶液经历了先复合再分解的物相演变的过程之后才生成羧基氧化钌薄膜.羧基对薄膜的性能有重要影响,薄膜经300℃保温2 h处理后比电容达728 F·g-1,1000次充放电循环后保持在99.47%,附着力达24.56 MPa.","authors":[{"authorName":"刘泓","id":"077c6b4f-54ed-48e6-be72-2db8ea11c89f","originalAuthorName":"刘泓"},{"authorName":"甘卫平","id":"b9cf881e-6f84-43e7-bdbe-c25d75ee7f46","originalAuthorName":"甘卫平"},{"authorName":"郑峰","id":"6c52bb28-72ca-441a-8de1-1dd4bc303b2c","originalAuthorName":"郑峰"},{"authorName":"","id":"7d6f1255-3483-4dee-85fd-027079629bfb","originalAuthorName":"李祥"},{"authorName":"马贺然","id":"90ac719a-ae11-4bb4-a21d-cec8f24e5fe9","originalAuthorName":"马贺然"}],"doi":"","fpage":"1","id":"62a374f7-f7b2-4d92-a125-cb5170d8aade","issue":"12","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"35e7d07e-9e56-4c40-8604-980263edf09f","keyword":"羧基氧化钌","originalKeyword":"羧基氧化钌"},{"id":"14297416-4fae-4af0-91c5-c1c101048f6a","keyword":"原位分解法","originalKeyword":"原位分解法"},{"id":"16743124-f46c-4a69-a485-a10379d55a2e","keyword":"电容性能","originalKeyword":"电容性能"},{"id":"e2e9f284-6933-4270-bb73-4736e8b49d1c","keyword":"超级电容器","originalKeyword":"超级电容器"},{"id":"1efd1914-5254-4a75-9301-4428dee7f174","keyword":"薄膜电极","originalKeyword":"薄膜电极"}],"language":"zh","publisherId":"jsrclxb201012001","title":"羧基氧化钌薄膜的热分解机理及其伏安性能","volume":"31","year":"2010"},{"abstractinfo":"以RuCl3·3H2O水溶液为电沉积液,采用直流-示差脉冲组合电沉积技术,通过后续热处理工艺制备超级电容器用钽基RuO2·nH2O薄膜电极材料.用X射线衍射仪 (XRD)、红外光谱仪 (FTIR)、差热分析仪 (DTA)、扫描电镜 (SEM)和电化学分析仪,研究前驱体RuCl3·cH2O转化为RuO2·nH2O的物相演变行为以及微观组织形貌和循环伏安性能.结果表明:随着热处理温度升高,前驱体RuCl3·cH2O通过4步反应转变成RuO2·nH2O薄膜;该薄膜经历从无定形向晶体结构的转变.经300 ℃热处理的RuO2·nH2O薄膜电极材料的单位面积质量为2.5 mg/cm2,比电容达到512 F/g;当电压扫描速率从5 mV/s增加到250 mV/s 时,其比电容下降34%.","authors":[{"authorName":"刘泓","id":"bd6ae0e1-8252-49b2-a105-fbbbbb68c12f","originalAuthorName":"刘泓"},{"authorName":"甘卫平","id":"7e118929-972b-479d-8f8e-8922901a17d4","originalAuthorName":"甘卫平"},{"authorName":"郭桂全","id":"5cf0df4b-b5bc-40bb-9ad2-c5a2b38cf359","originalAuthorName":"郭桂全"},{"authorName":"刘继宇","id":"ddb523da-9330-4ebf-a710-943d6b215857","originalAuthorName":"刘继宇"},{"authorName":"","id":"09472648-9f38-4925-9715-97dcb582ab1b","originalAuthorName":"李祥"},{"authorName":"郑峰","id":"08d9f068-4da0-4421-83ac-d1609ed9bdd3","originalAuthorName":"郑峰"}],"doi":"","fpage":"522","id":"82bfe576-b1f6-47df-baba-694eb0f0f699","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"8742ca3b-1121-4309-b99a-2093ea5592b5","keyword":"水合氧化钌","originalKeyword":"水合氧化钌"},{"id":"2fa4ec8c-8846-4e45-99f2-d26477bfd43b","keyword":"薄膜材料","originalKeyword":"薄膜材料"},{"id":"d1c7b03e-ba66-43a1-bcbb-8807297d8885","keyword":"热处理","originalKeyword":"热处理"},{"id":"8b14b491-a1c8-468b-89ee-7c450f5d1742","keyword":"超级电容器","originalKeyword":"超级电容器"},{"id":"e05b4da9-de0a-4cd4-81d4-ff9eb86b1513","keyword":"物相演变","originalKeyword":"物相演变"}],"language":"zh","publisherId":"zgysjsxb201003022","title":"RuO2·nH2O薄膜的制备以及物相演变和伏安特性","volume":"20","year":"2010"}],"totalpage":13,"totalrecord":130}