基于对变形镍基高温合金在不同温度和时间条件下合金成分及其持久强度数据归一化处理后的反向传播神经网络模拟,得到了可以比较准确表达持久强度与合金成分、温度和时间之间复杂非线性关系的权值矩阵,由此可以对镍基合金在不同温度和时间条件下的持久强度进行预测.结果表明,用神经网络预测的持久强度与实验结果吻合良好,从而证实了该网络模型的准确性和适用性.
参考文献
[1] | Harada H,Yamazaki M.Tetsu Hagane,1979;7:337 |
[2] | Harada H, Ohno K, Yamagata T, Yokokawa T, Yamazaki M. In: Reichmann S, Duhl D N, Maurer G, Antolovic S,Lunds C eds, Superalloys 1988, PA, Warrendale: TMSAIME, 1988:733 |
[3] | Yoo Y S, Jo C Y, Jones C N. Mater Sci Eng, 2002; A336:22 |
[4] | Gui Z L, Chen L J. Mater Eng, 1992; 2:22(桂忠楼,陈立江.材料工程,1992;2:22) |
[5] | Zhu R Z,Lu Y X.Heat-Ressitant Steels and Superalloys.Beijing:Chemistry Industry Press,1996:1(朱日彰,卢亚轩.北京:耐热钢和高温合金.化学工业出版社,1996: 1) |
[6] | Baldwin J. USP RE28 681, 1976 |
[7] | Kondo T, Nakajima H, Shindo M, Tsuji H, Tanaka R,Isobe S, Ohta S, Watanabe R. USP 5 141 704, 1992 |
[8] | Watanabe R, Chiba Y. USP 4 006 015, 1977 |
[9] | Chen G L. Superalloys. Beijing: Metallurgy Industry Press, 1988:5(陈国良高温合金学.北京:冶金工业出版社,1988:5) |
[10] | Chong S Theories and Applications of Neural Network for MATLAB Toolbox,Hefei:Chinese University of Science and Technology Press,1998:8(丛爽.面向MATLAB工具箱的神经网络理论与应用,合肥:中国科学技术大学出版社,1998:8) |
[11] | Hu T S.Prediction and Optimization of Artificial Neural Network.Dalian:Dalian University of Maritime Affairs Press,1997:7(胡铁松.神经网络预测与优化大连:大连海事大学出版社.1997:7) |
[12] | Wen X,Zhou L.Application and Design of Artificial Neural Network for MATLAB.Beijing:Science Press,2000:9(闻新,周露.MATLAB神经网络应用设计.北京:科学出版社.2000:9) |
[13] | Yoshitake S,Narayan V,Harada H,Mackay D J C.ISIJ International,1998;38:495 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%