采用有限元数值计算方法研究了冷喷涂过程中Cu粒子与Cu基体的碰撞变形行为,探讨了粒子速度、温度对其碰撞基体后的变形行为、界面温度变化与粒子和基体的接触面积的影响.结果表明,随粒子碰撞速度的增加,粒子扁平率与碰撞界面温度增加、接触面积增大.证实了存在使碰撞界面发生绝热剪切失稳变形的临界速度,该速度与粒子沉积的临界速度一致.当粒子速度大于产生绝热剪切失稳变形的临界速度时,粒子的变形扁平率显著增加,且界面温度与有效接触界面面积也显著增加;随碰撞前粒子温度的增加,碰撞界面的温度也显著增加.高达粒子材料熔点的界面温度与有效接触面积的显著增加,将有助于粒子与基体之间冶金结合的形成.
参考文献
[1] | Alkimov A P, Kosarev V F. Dokl Akad Nauk SSSR, 1990;315:1062 |
[2] | Papyrin A. Adv Mater Process, 2001; 159:49 |
[3] | Assadi H, Gartner F, Stoltenhoff T, Kreye H. Acta Mater,2003; 51:4379 |
[4] | Gilmore D L, Dykhuizen R C, Neiser R A, Roemer T J,Smith M F. J Therm Spray Technol, 1999; 8:576 |
[5] | Dykhuizen R C, Smith M F, Gilmore D L, Neiser R A,Jiang X, Sampath S. J Therm Spray Technol, 1999; 8:559 |
[6] | Papyrin A N, Kosarev V F, Klinkov S V, Alkimov A P. In:Lugscheider E, ed., Tagungsband Conference Proceedings,Essen: German Welding Society, 2002:419 |
[7] | Li C J, Li W Y, Fukanuma H. In: von Hofe D, ed., Thermal Spray Solutions Advances in Technology and Applications, Dusseldorf: German Welding Society, 2004:335 |
[8] | Li C J, Li W Y. Surf Coat Techol, 2003; 167:278 |
[9] | Borvik T, Hopperstad O S, Berstad T, Langseth M. Int J Impact Eng, 2002; 27:37 |
[10] | Livermore Software Technology Corporation. LS-DYNA Theoretical Manual, Livermore, Calif, USA, 1998 |
[11] | Wu L. Welding Handbook (Vol. 1: Welding Processes and Equipment). Beijing: China Machine Press, 2001:723吴林.焊接手册(第1卷:焊接方法及设备).北京:机械工业出版社,2001:723) |
[12] | Zheng Y M. Explosive Welding and Metallic Composite and Their Engineering Application. Changsha: Central South University Press, 2002:14(郑远谋.爆炸焊接和金属复合材料及其工程应用.长沙:中南大学出版社,2002:14) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%