基于电子-声子相互作用计算了马氏体预相变的临界驱动力.计算结果表明,临界相变驱动力的大小和凝聚声子的能量处于同一数量级.充分考虑这种相互作用和声子软化,得到关于原子位相角的double sine-Gordon方程,以此分析预相变的非线性特征,并认为电子-声子耦合机制可作为预相变的形核机制.
参考文献
[1] | Zheludev A, Shapiro S M, Wochner P, Schwartz A, Wall M, Tanner L E. Phys Rev, 1995; 51B: 11310 |
[2] | Zheludev A, Shapiro S M, Wochner P, Tanner L E. Phys Rev, 1996; 54B: 15045 |
[3] | Satija S K, Shapiro S M, Salamon M B, Wayman C M.Phys Rev, 1984; 29B: 6031 |
[4] | Fuchizaki K, Yamada Y. Phys Rev, 1989; 40B: 4740 |
[5] | Stassis C, Zarestky J, Wakabayashi N. Phys Rev Lett,1978; 41:1726 |
[6] | Heiming A, Petry W, Trampenau J, Alba M, Herzig C,Schober H R, Vogl G. Phys Rev, 1991; 43B: 10948 |
[7] | Petry W, Flottmann T, Heiming A, Trampenau J, Alba M, Vogl G. Phys Rev Lett, 1988; 61:722 |
[8] | Petry W, Heiming A, Trampenau J, Alba M, Herzig C,Schober H R, Vogl G. Phys Rev, 1991; 43B: 10933 |
[9] | Trampenau J, Heiming A, Petry W, Alba M, Herzig C,Miekeley W, Schober H R. Phys Rev, 1991; 43B: 10963 |
[10] | Guenin G, Jara D R, Morin M, Delaey L, Pynn R, Gobin P E. J Phys Colloq, 1982; 43(C4): 597 |
[11] | Horovitz B, Murray J L, Krumhansl J A. Phys Rev, 1978;18B: 3549 |
[12] | Sanati M, Saxena A. Physica, 1998; 123D: 368 |
[13] | Huang K. Solid State Physics. Beijing: Higher Education Press, 2002:512(黄昆.固体物理.北京:高等教育出版社,2002:512) |
[14] | Dodd R K, Eilbeck J C, Gibbon J D, Morris H C. Solitons and Nonlinear Wave Equations. London: Academic Press, 1984:593 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%