在具有高弹性和力学稳定性的柔性基底上,用磁控溅射系统制备了亚微米厚铜薄膜,利用透射电镜(TEM)、扫描电镜(SEM)电子背散射成像及X射线衍射(XRD)对铜薄膜进行了微观结构表征.采用恒载荷幅控制研究了亚微米厚度铜薄膜的疲劳损伤行为.结果表明:退火后的铜薄膜呈现强烈的(111)织构,薄膜中存在大量的微米、纳米尺度孪晶.在恒载荷幅作用下,亚微米厚的薄膜不易产生疲劳挤出和微裂纹,疲劳裂纹容易在界面处萌生,孪晶附近的位错塞积及界面附近变形的不协调性导致了疲劳裂纹的产生.而亚微米厚铜薄膜疲劳强度的提高来源于薄膜厚度、晶粒尺寸和孪晶尺寸三个微尺度的约束.
参考文献
[1] | Menz W,Mohr J,Paul O.Microsystem Technology.Weinheim:Wiley-VCH,2001:209 |
[2] | Nix W D.Metall Trans,1989; A20:2217 |
[3] | Ohring M.Reliability and Failure of Electronic Materials and Devices.San Diego:Academic Press,1998:17 |
[4] | Judelewicz M.Scr Metall Mater,1993; 29:1463 |
[5] | Hong S,Weil R.Thin Solid Films,1996; 283:175 |
[6] | Read D T.Int J Fatigue,1998; 20:203 |
[7] | Kraft O,Wellner P,Hommel M,Schwaiger R,Arzt E.Z Metallkd,2002; 93:392 |
[8] | Schwaiger R,Dehm G,Kraft O.Philos Mag,2003; 83:693 |
[9] | Schwaiger R,Kraft O.Acta Mater,2003; 51:195 |
[10] | Zhang G P,Schwaiger R,Volkert C A,Kraft O.Philos Mag Lett,2003; 83:477 |
[11] | Zhang G P,Volkert C A,Schwaiger R,Kraft O,Arzt E.J Mater Res,2005; 20:201 |
[12] | Thompson C V,Carel R.J Mech Phys Solids,1996; 44:657 |
[13] | Weihnacht V,Bruckner W.Thin Solid Films,2002; 418:136 |
[14] | Zhang G P,Wang Z G.Acta Metall Sin,2005; 41:1(张广平,王中光.金属学报,2005;41:1) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%