欢迎登录材料期刊网

材料期刊网

高级检索

利用开有V形缺口的平板试样,研究了新型铸造镍基高温合金K445在最高温度分别为800,850,900℃,最低温度为室温的热循环下的热疲劳行为.通过光学显微镜和扫描电镜观察合金的组织和热疲劳裂纹形貌,研究热疲劳损伤机制.结果表明,热疲劳主裂纹主要从V形缺口处萌生,沿晶界扩展,而二次裂纹则穿晶扩展.当最高循环温度为800℃时,碳化物的组成和分布起主要作用,(Ti,Ta)C型碳化物的开裂处以及碳化物与基体的界面处是裂纹优先扩展区域.当最高循环温度为900℃时,高温氧化起重要作用,应力辅助作用下的晶界氧脆是主要损伤机制.

参考文献

[1] Varin J D.In:Sims C T,Hagel W C eds,The Superalloys,New York:John Wiley & Sons,1972:242
[2] Blümm M,Demestral B,Eggeler G,Réza(l)-Aria F.Scr Metall Mater,1995; 33:719
[3] Felberbaum L,Voisey K,G(a)umann M,Viguier B,Mortensen A.Mater Sci Eng,2001; A299:152
[4] Li Z J,Zhou L Z,Guo J T,Yao J.J Mater Eng,2005;(8):24(李志军,周兰章,郭建亭,姚俊.材料工程,2005;(8):24)
[5] Yuan F H,Sun X F,Guan H R,Hu Z Q.J Mater Eng,2001; (Suppl):22(袁福河,孙晓峰,管恒荣,胡壮麒.材料工程,2001;(增刊):22)
[6] Woodford D A,Mowbray D F.Mater Sci Eng,1974; 16:5
[7] Glenny E,Taylor T A.J Inst Met,1959-1960; 88:449
[8] Bhattachar V S.Int J Fatigue,1995; 17:407
[9] Reuchet J,Rémy L.Mater Sci Eng,1983; 58:33
[10] He L Z,Zheng Q,Sun X F,Guan H R,Hu Z Q,Tieu A K,Lu C,Zhu H T.Mater Sci Eng,2005; A397:297
[11] Chen Q Z,Jones C N,Knowles D M.Mater Sci Eng,2004;A385:402
[12] Kaufman M.In:Gell M,Kortovich C S,Bricknell R H,Kent W B,Radavich J Feds,Superalloy 1984,Warrendale PA:AIME,1984:43
[13] Elliott R O,Kempter C P.J Phys Chem,1958; 62:630
[14] Brandes E A.Smithells Metals Reference Book.6th Edition,London:Butterworths,1983:14
[15] Reuchet J,Rémy L.Mater Sci Eng,1983; 58:19
[16] Florren S,Kane R.Metall Trans,1979; 10A:1745
[17] Li M S.High Temperature Corrosion of Metals.Beijing:Metallurgical Industry Press,2001:349(李美栓.金属的高温腐蚀.北京:冶金工业出版社,2001:349)
[18] Kang B,Liu X B,Cisloiu C,Chang K M.Mater Sci Eng,2003; A347:205
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%