通过在B4C-TiB2预烧体中真空熔渗Al制备了B4C-TiB2-Al复合材料,研究了TiB2含量对复合材料显微组织和力学性能的影响.结果表明: B4C-TiB2-Al复合材料主要由B4C,TiB2,Al和Al3BC等相组成;随着TiB2含量的增加,复合材料的HRA硬度逐渐降低,抗弯强度逐渐增大,断裂韧性先增大后稍微降低,当TiB2含量为40%(质量分数)时,复合材料的气孔率、硬度HRA、抗弯强度和断裂韧性分别为1.32%,80.3,559.4 MPa和7.83 MPa·m1/2;延性Al的加入,裂纹的偏转和分叉、B4C和TiB2晶粒的细化以及B4C基体和TiB2晶粒热膨胀的不匹配,是造成材料断裂韧性提高的主要原因;随着Al渗入量的增加,复合材料断口中金属撕裂棱及韧窝的比例增加.
参考文献
[1] | Deng J X,Zhou J,Feng Y H,Ding Z L.Ceram Int,2002; 28:425 |
[2] | Li S B,Wen G W,Zhang B S.Acta Metall Sin,2001; 37:663(李世波,温广武,张宝生.金属学报,2001;37:663) |
[3] | Yamada S,Hirao K,Yamauchi Y,Kanzaki S.J Eur Ceram Soc,2003; 23:561 |
[4] | Goldstein A,Yeshurun Y,Goldenberg A.J Eur Ceram Soc,2007; 27:695 |
[5] | Skorokhod V V,Krstic V D.Powder Metall Met Ceram,2000; 39:504 |
[6] | Srivatsan T S,Guruprasad G,Black D,Radhakrishnan R,Sudarshan T S.Powder Technol,2005; 159:161 |
[7] | Lee B S,Kang S.Mater Chem Phys,2001; 67:249 |
[8] | Tariolle S,Thévenot F,Aizenstein M,Dariel M P,Frumin N,Frage N.J Solid State Chem,2004; 177:400 |
[9] | Frage N,Levin L,Frumin N,Gelbstein M,Dariel M P.J Mater Process Technol,2003; 143-144:486 |
[10] | Li Q,Hua W J,Cui Y,Zhang S Q.J Mater Eng,2003; 4:17(李青,华文君,崔岩,张少卿.材料工程,2003;4:17) |
[11] | Zhou Y,Lei T Q.Ceramic Materials.2 ed.,Beijing:Sci-ence Press,2004:162(周玉,雷廷权.陶瓷材料学.第二版,北京:科学出版社,2004:162) |
[12] | Wang L S.Special Ceramics.2 ed.,Changsha:Central South University of Technology Press,1993:123(王零森.特种陶瓷.第二版,长沙:中南工业大学出版社,1993:123) |
[13] | Krstie V V,Nicholson P S,Hoagland R G.J Am Ceram Soc,1981; 64:499 |
[14] | Marshall D B,Morris W L.J Am Ceram Soc,1990; 73:2938 |
[15] | Viala J C,Bouix J,Gonzalez G,Esnouf C.J Mater Sci,1997; 32:4559 |
[16] | Liu J,Darrell O P.J Am Ceram Soc,1991; 74:674 |
[17] | Halverson,Danny C H.J Am Ceram Soc,1989; 72:775 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%