总结了不同金属材料在低周疲劳过程中典型的晶界、孪晶界、相界和微电子互连界面的损伤开裂行为.纯Cu中疲劳裂纹萌生的难易顺序为:小角度晶界、驻留滑移带和大角度晶界.对于纯Cu与铜合金中退火孪晶界,是否萌生疲劳裂纹与合金成分有关,随合金元素的加入降低了层错能,退火孪晶界相对容易萌生疲劳裂纹.对于Cu-Ag二元合金,由于存在不同的晶界和相界面,是否萌生疲劳裂纹取决于界面两侧晶体的取向差,通常两侧取向差大的界面容易萌生疲劳裂纹.在微电子互连界面中,疲劳裂纹萌生位置与焊料成分和时效时间有关,对于Sn-Ag/Cu互连界面,疲劳裂纹通常沿焊料与界面化合物结合处萌生;对于Sn-Bi/Cu互连界面,随时效时间增加会出现明显的由于Bi元素偏聚造成的界面脆性.
Interfacial fatigue cracking behaviors along large-angle grain boundaries(GBs),twin boundaries(TBs),phase boundaries(PBs)and joint interfaces in metallic materials were summarized.It is found that the resistance to fatigue crack initiation decreases in the order of low-angle GBs.persistent slip bands and the large-angle GBs in pure Cu.For annealing TBs.fatigue cracking initiation strongly depends on the stacking fault energy(SFE)in Cu alloys.With decreasing SFE,fatigue cracking along TBs becomes easy.In Cu-Ag binary alloys,the misorientation across GBs or PBs plays an important role in the fatigue cracking,and large misorientation often makes the final fatigue cracking.For the Cu/solder joint interface,the interfacial fatigue cracking modes are affected by the solders and aging time.In Sn-Ag/Cu solder joints,fatigue crack normally nucleates along the interface between the Sn-Ag solder and the intermetallics compounds(IMCs);however,for Sn-Bi/Cu solder joints,brittle interfacial fatigue cracking always occurs along the interface between Cu and the IMCs due to the Bi segregation after aging for a long time.
参考文献
[1] | Suresh S,translated by Wang Z G,et al.Fatigue of Ma-terials.Beijing:National Defence Industry Press,1999:1(Suresh S著;王中光,等译.材料的疲劳.北京:国防工业出版社,1999:1) |
[2] | Albert W A J.Arch Mineral,Geognosie,Bergbau Hut-tenkunde,1838;i0:215 |
[3] | Ewing J A,Humfrey J C.Philos Trans R Soc London,1903;200A:241 |
[4] | Schmid E,Boas W.Plasticity of Crystals.London:Chap-man and Hall.1968:1 |
[5] | Seeger A.Dislocation and Mechanical Properties of Crys-tals.New York:John Wiley,1957:1 |
[6] | Honeycombe R W K.Plastic Deformation of Metals.Lon-don:Cambridge Press.1969:1 |
[7] | Klesnil M,Lukas P.Fatigue of Materials.3rd Ed.,Ams-terdam:the Netherlands,1992:1 |
[8] | Thompson N,Wadsworth N J,Louat N.Philos Mag,1956;1:113 |
[9] | Essmann U,Gusele U,Mughrabi H.Philos Mag,1981;44:405 |
[10] | Basinski Z S,Pascual R,Basinski S J.Acta Metall,1983;31:591 |
[11] | Hunsche A,Neumann P.Acta Metall,1986;34:207 |
[12] | Kim W K,Laird C.Acta Metall,1978;26:789 |
[13] | Liu W,Bayerlein M,Mughrabi H,Day A,Quested P N.Acta Metall Mater,1992;40:1763 |
[14] | Watanabe T.Res Mech,1984;11:47 |
[15] | Watanabe T,Fujii H,Oikawa H,Arai K I.Acta Metall 1989;37:47 |
[16] | Aust KT,Erb U,Palumbo G.Mater Sci Eng,1994;A176:329 |
[17] | Pan Y,Adams B L,Olson T,Panayotou N.Aeta Mater,1996:44:4685 |
[18] | Adams B L,Zhao J W,Ohara D.Acta Metall Mater,1990;38:953 |
[19] | Lu L,Shen Y F,Chen X H,Qian L H,Lu K.Science,2004;304:422 |
[20] | Shen Y F,Lu L,Lu K.Scr Mater,2005;52:989 |
[21] | Zhang Z F,Wang Z G.Mater Sci Eng,1999;A271:449 |
[22] | Hu Y M,Wang Z G.Scr Mater,1996;34:1019 |
[23] | Zhang Z F,Wang Z G,Li S X.Fatigue Fract Eng Mater Struct,1998;21:1307 |
[24] | Zhang Z F,Wang Z G.Acta Mater,2003;51:367 |
[25] | Zhang Z F,Wang Z G,Hu Y M.Mater Sci Eng,1999;A269:136 |
[26] | Zhang Z F,Wang Z G.Prog Mater Sei,2008;53:1025 |
[27] | Zhang Z F,Li X W,Su H H,Wang Z G.J Mater Sci Technol,1998;14:211 |
[28] | Zhang Z F,Wang Z G,Eckert J.J Mater Res,2003;18:1031 |
[29] | Figueroa J C,Laird C.Mater Sci Eng,1983;60:45 |
[30] | Huang H L,Ho N J.Mater Sci Eng,2000;A293:7 |
[31] | Mughrabi H,Ackermann F,Herz K.ASTM STP,1983;811:5 |
[32] | Polak J,Liskutin P.Fatigue Fract Eng Mater Struct,1990;13:119 |
[33] | Polak J,Vasek A,Obrtlik K.Fatigue Fract Eng Mater Struct,1996;19:147 |
[34] | Boettner R C,McEvily A J,Liu Y C.Philos Mag,1964;10:95 |
[35] | Zhang P,1Duan Q Q,Li SX,Zhang Z F.Phdos Mag,2008;88:2487 |
[36] | Qu S,Zhang P,Wu S D,Zang Q S,Zhang Z F.Scr Mater,2008:59:1131 |
[37] | High J P,Lothe J.In:Hirth J P,Lothe J eds.,Theory of Dislocations,2nd Ed.,NewYork:John Wiley and SonsInc.,1982:306 |
[38] | Murr L E.In:Murr L E ed.,Interracial Phenomena in Metals and Alloys,MA:Addison-Wesley Publishing Com-pany,1975:145 |
[39] | Han K,Vasquez A A,Xin Y,Kalu P N.Acta Mater,2003;51:767 |
[40] | Rao G,Howe J M,Wynblatt P.Scr Metall Mater,1994;30:731 |
[41] | Tian Y Z,Zhang Z F.Mater Sci Eng,2009;A508:206 |
[42] | Stolarz J,Madelaine-Dupuich O,Magnin T.Mater SciEng,2001;A299:275 |
[43] | Lefranc P,Doquet V,Gerland M,Sarrazin-Baudoux C.Acta Mater,2008;56:4450 |
[44] | Motoyashiki Y,Brfickner-Foit A,Sugeta A.Eng PractMech,2008;75:768 |
[45] | Alvarez-Armas I,Marinelli M C,Malarrla J A,DegallaixS,Armas A F.Int J Fatigue,2007;29:758 |
[46] | Abtew M,Selvaduray G.Mater Sci Eng,2000;R27:95 |
[47] | Zhang Q K,Zou H F,Zhang Z F.J Electronic Mater,2009,in press |
[48] | Zhu Q S,Zhang Z F,Shang J K,Wang Z G.Mater SciEng.2006;A435-436:588 |
[49] | Zou H F,Zhang Q K,Zhang Z F.Scr Mater,2009;61:308 |
[50] | Lee H T,Chen M H,Jao H M,Liao T L.Mater Sci Eng,2003;A358:134 |
[51] | Zhang Q K,Zhang Z F.J Alloy Compd,2009,under re-view |
[52] | Glazer J.Inter Mater Rev,1995;40(2):65 |
[53] | Zhu Q S.PhD Thesu,Institute of Metal Research,ChineseAcademy of Sciences,Shenyang,2008(祝清省.中国科学院金属研究所博士毕业论文,沈阳,2008) |
[54] | Liu P L,Shang J K.Scr Mater,2001;44:1019 |
[55] | Liu P L,Shang J K.J Mater Res,2001;16:1651 |
[56] | Zou H F,Zhang Q K,Tian Y Z,Zhang Z F.J Appl Phys,received |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%