欢迎登录材料期刊网

材料期刊网

高级检索

总结了不同金属材料在低周疲劳过程中典型的晶界、孪晶界、相界和微电子互连界面的损伤开裂行为.纯Cu中疲劳裂纹萌生的难易顺序为:小角度晶界、驻留滑移带和大角度晶界.对于纯Cu与铜合金中退火孪晶界,是否萌生疲劳裂纹与合金成分有关,随合金元素的加入降低了层错能,退火孪晶界相对容易萌生疲劳裂纹.对于Cu-Ag二元合金,由于存在不同的晶界和相界面,是否萌生疲劳裂纹取决于界面两侧晶体的取向差,通常两侧取向差大的界面容易萌生疲劳裂纹.在微电子互连界面中,疲劳裂纹萌生位置与焊料成分和时效时间有关,对于Sn-Ag/Cu互连界面,疲劳裂纹通常沿焊料与界面化合物结合处萌生;对于Sn-Bi/Cu互连界面,随时效时间增加会出现明显的由于Bi元素偏聚造成的界面脆性.

Interfacial fatigue cracking behaviors along large-angle grain boundaries(GBs),twin boundaries(TBs),phase boundaries(PBs)and joint interfaces in metallic materials were summarized.It is found that the resistance to fatigue crack initiation decreases in the order of low-angle GBs.persistent slip bands and the large-angle GBs in pure Cu.For annealing TBs.fatigue cracking initiation strongly depends on the stacking fault energy(SFE)in Cu alloys.With decreasing SFE,fatigue cracking along TBs becomes easy.In Cu-Ag binary alloys,the misorientation across GBs or PBs plays an important role in the fatigue cracking,and large misorientation often makes the final fatigue cracking.For the Cu/solder joint interface,the interfacial fatigue cracking modes are affected by the solders and aging time.In Sn-Ag/Cu solder joints,fatigue crack normally nucleates along the interface between the Sn-Ag solder and the intermetallics compounds(IMCs);however,for Sn-Bi/Cu solder joints,brittle interfacial fatigue cracking always occurs along the interface between Cu and the IMCs due to the Bi segregation after aging for a long time.

参考文献

[1] Suresh S,translated by Wang Z G,et al.Fatigue of Ma-terials.Beijing:National Defence Industry Press,1999:1(Suresh S著;王中光,等译.材料的疲劳.北京:国防工业出版社,1999:1)
[2] Albert W A J.Arch Mineral,Geognosie,Bergbau Hut-tenkunde,1838;i0:215
[3] Ewing J A,Humfrey J C.Philos Trans R Soc London,1903;200A:241
[4] Schmid E,Boas W.Plasticity of Crystals.London:Chap-man and Hall.1968:1
[5] Seeger A.Dislocation and Mechanical Properties of Crys-tals.New York:John Wiley,1957:1
[6] Honeycombe R W K.Plastic Deformation of Metals.Lon-don:Cambridge Press.1969:1
[7] Klesnil M,Lukas P.Fatigue of Materials.3rd Ed.,Ams-terdam:the Netherlands,1992:1
[8] Thompson N,Wadsworth N J,Louat N.Philos Mag,1956;1:113
[9] Essmann U,Gusele U,Mughrabi H.Philos Mag,1981;44:405
[10] Basinski Z S,Pascual R,Basinski S J.Acta Metall,1983;31:591
[11] Hunsche A,Neumann P.Acta Metall,1986;34:207
[12] Kim W K,Laird C.Acta Metall,1978;26:789
[13] Liu W,Bayerlein M,Mughrabi H,Day A,Quested P N.Acta Metall Mater,1992;40:1763
[14] Watanabe T.Res Mech,1984;11:47
[15] Watanabe T,Fujii H,Oikawa H,Arai K I.Acta Metall 1989;37:47
[16] Aust KT,Erb U,Palumbo G.Mater Sci Eng,1994;A176:329
[17] Pan Y,Adams B L,Olson T,Panayotou N.Aeta Mater,1996:44:4685
[18] Adams B L,Zhao J W,Ohara D.Acta Metall Mater,1990;38:953
[19] Lu L,Shen Y F,Chen X H,Qian L H,Lu K.Science,2004;304:422
[20] Shen Y F,Lu L,Lu K.Scr Mater,2005;52:989
[21] Zhang Z F,Wang Z G.Mater Sci Eng,1999;A271:449
[22] Hu Y M,Wang Z G.Scr Mater,1996;34:1019
[23] Zhang Z F,Wang Z G,Li S X.Fatigue Fract Eng Mater Struct,1998;21:1307
[24] Zhang Z F,Wang Z G.Acta Mater,2003;51:367
[25] Zhang Z F,Wang Z G,Hu Y M.Mater Sci Eng,1999;A269:136
[26] Zhang Z F,Wang Z G.Prog Mater Sei,2008;53:1025
[27] Zhang Z F,Li X W,Su H H,Wang Z G.J Mater Sci Technol,1998;14:211
[28] Zhang Z F,Wang Z G,Eckert J.J Mater Res,2003;18:1031
[29] Figueroa J C,Laird C.Mater Sci Eng,1983;60:45
[30] Huang H L,Ho N J.Mater Sci Eng,2000;A293:7
[31] Mughrabi H,Ackermann F,Herz K.ASTM STP,1983;811:5
[32] Polak J,Liskutin P.Fatigue Fract Eng Mater Struct,1990;13:119
[33] Polak J,Vasek A,Obrtlik K.Fatigue Fract Eng Mater Struct,1996;19:147
[34] Boettner R C,McEvily A J,Liu Y C.Philos Mag,1964;10:95
[35] Zhang P,1Duan Q Q,Li SX,Zhang Z F.Phdos Mag,2008;88:2487
[36] Qu S,Zhang P,Wu S D,Zang Q S,Zhang Z F.Scr Mater,2008:59:1131
[37] High J P,Lothe J.In:Hirth J P,Lothe J eds.,Theory of Dislocations,2nd Ed.,NewYork:John Wiley and SonsInc.,1982:306
[38] Murr L E.In:Murr L E ed.,Interracial Phenomena in Metals and Alloys,MA:Addison-Wesley Publishing Com-pany,1975:145
[39] Han K,Vasquez A A,Xin Y,Kalu P N.Acta Mater,2003;51:767
[40] Rao G,Howe J M,Wynblatt P.Scr Metall Mater,1994;30:731
[41] Tian Y Z,Zhang Z F.Mater Sci Eng,2009;A508:206
[42] Stolarz J,Madelaine-Dupuich O,Magnin T.Mater SciEng,2001;A299:275
[43] Lefranc P,Doquet V,Gerland M,Sarrazin-Baudoux C.Acta Mater,2008;56:4450
[44] Motoyashiki Y,Brfickner-Foit A,Sugeta A.Eng PractMech,2008;75:768
[45] Alvarez-Armas I,Marinelli M C,Malarrla J A,DegallaixS,Armas A F.Int J Fatigue,2007;29:758
[46] Abtew M,Selvaduray G.Mater Sci Eng,2000;R27:95
[47] Zhang Q K,Zou H F,Zhang Z F.J Electronic Mater,2009,in press
[48] Zhu Q S,Zhang Z F,Shang J K,Wang Z G.Mater SciEng.2006;A435-436:588
[49] Zou H F,Zhang Q K,Zhang Z F.Scr Mater,2009;61:308
[50] Lee H T,Chen M H,Jao H M,Liao T L.Mater Sci Eng,2003;A358:134
[51] Zhang Q K,Zhang Z F.J Alloy Compd,2009,under re-view
[52] Glazer J.Inter Mater Rev,1995;40(2):65
[53] Zhu Q S.PhD Thesu,Institute of Metal Research,ChineseAcademy of Sciences,Shenyang,2008(祝清省.中国科学院金属研究所博士毕业论文,沈阳,2008)
[54] Liu P L,Shang J K.Scr Mater,2001;44:1019
[55] Liu P L,Shang J K.J Mater Res,2001;16:1651
[56] Zou H F,Zhang Q K,Tian Y Z,Zhang Z F.J Appl Phys,received
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%