欢迎登录材料期刊网

材料期刊网

高级检索

通过对挤压变形Mg-x%Al-3%Ni(x=4,5,6,7,质量分数)合金进行总应变控制模式的室温疲劳实验,研究了不同Al含量的挤压变形Mg-x%Al-3%Ni合金的循环应力响应.疲劳寿命和循环应力-应变行为.结果表明:不同Al含量的挤压变形Mg-x%Al-3%Ni合金均表现为循环应变硬化;挤压变形Mg-x%A1-3%Ni合金的应变疲劳寿命与塑性应变幅、弹性应变幅间的关系分别服从Coffin-Manson和Basquin关系式.

Due to the low density,high specific strength and stiffness,magnesium alloys are being considered for automotive and aerospace applications.The structural applications of magnesium components need a decent low-cycle fatigue performance,because cyclic loading is often encountered. In order to identify the low-cycle fatigue behavior of the newly developed Mg-x%Al-3%Ni(x=4,5,6,7,mass fraction)extruded magnesium alloys with different contents of Al,the total strain-controlled low-cycle fatigue tests were performed at room temperature.The cyclic stress response,strain fatigue Iire and cyclic stress-strain behaviors were investigated for the hot-extruded Mg-x%Al-3%Ni alloys.The results of the low-cyclic fatigue tests show that the hot-extruded Mg-x%A1-3%Ni alloys exhibit the cyclic strain hardening during fatigue deformation.The dependences of the strain fatigue life on plastic strain amplitude and elastic strain amplitude can be described by the Coffin-Manson and Basquin equations,respectively.In the hot extruded Mg-x%Al-3%Ni alloys with different contents of A1,the extruded Mg-5%Al-3%Ni alloy gives the longest fatigue life and the highest fatigue resistance. In addition,a linear relation between the cyclic stress amplitude and cyclic strain amplitude Can be noted for the hot-extruded Mg-x%Al~3%Ni alloys.KEY WoRDS Mg-x%Al-3%Ni alloy,hot-extrusion,cyclic stress response,fatigue life,cyclic 8tress-strain

参考文献

[1] Liu J A,Li J X.Sichuan Nonferrous Met,2007;(1):2(刘静安,李建湘.四川有色金属,2007;(1):2)
[2] Eliezer D,Aghion E,Froes F H.Adv Performance Mater,1998;5:201
[3] Friedrieh H,Schumann S.J Mater Process Technol,2001;117:276
[4] Kojima Y.Mater Sci Forum,2000;350-351:3
[5] Liu Y,Li Y Y,Zhang W W,Luo Z Q,Zhang D T.LightMet,2002;(8):56(刘英,李元元,张卫文,罗宗强,张大童.轻金属,2002;(8):561
[6] Hu X J,Gao H W,Li C M,Liu S H,Liu L M.Shanghai Nonferrous Met,2004;25(3):100(胡晓菊,高洪吾,李长茂,刘顺华,刘黎明.上海有色金属,2004;25(3):100)
[7] Zhang S C,Duan H Q,Cai Q Z,Wei B K,L-m H T,ChenW C.Foundry.2001;50:310(张诗昌,段汉桥,蔡启舟,魏伯康,林汉同,陈渭臣.铸造,2001;50:310)
[8] 8 Li G Q,Wu G H,Fan Y,Ding W J.Foundry Technol 2006;27:79(李冠群,吴国华,樊昱,丁文江.铸造技术,2006;27:791
[9] Onga M S,Li Y,Blackwood D J,Ng S C.Mater Sci Eng,2001:A304-306:510
[10] Yao H B,Li Y,Wee A T S,Chai J W,Pan J S.Electrochim Acta,2001;46:2649
[11] Chen L J,Liu Z,Hu Z Q.J Shenyang Univ Technol,2005;27:253(陈立佳,刘正,胡壮麒.沈阳工业大学学报,2005;27:253)
[12] Potzies C,Kainer K U.Adv Eng Mater,2004;6:281
[13] Raske D T,Morrow J.ASTM STP 465.Philadelphia:American Society for Testing and Materials,1969:1
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%