欢迎登录材料期刊网

材料期刊网

高级检索

选用40Cr结构钢,分别在空气、水和3.5%NaCl水溶液中进行旋转弯曲疲劳实验,研究环境介质对该结构钢高周和超高周疲劳特性的影响.结果表明,40Cr钢在水环境中的疲劳强度比在空气中明显降低;在3.5%NaCl水溶液环境中的疲劳强度比在水中低.断面观察显示,在水和3.5%NaCl水溶液中,疲劳裂纹多源萌生;在稳态扩展阶段,裂纹沿品界扩展并存在广泛分布的沿晶二次裂纹.

Very-high-cycle fatigue of metallic materials is commonly regarded as fatigue failure occurs at stress levels below couventioual fatigue limit and the relevant fatigue lives are above 10~7 cyc. Rotary bending fatigue tests for a structural steel 40Cr were performed in laboratory air, fresh water and 3.5%NaCl aqueous solution, respectively, to investigate the influence of environmental media on fatigue behaviors of the steel in high cycle and very-high-cycle fatigue regimes. The results show that the fatigue strength of the steel in water is remarkably degraded compared with that in air, and the fatigue strength in 3.5%NaCl solution is even lower than that in water. The fracture surface observa-tions show that for the specimens tested in water and 3.5%NaCl solution, multiple crack originations exist and cracks propagate along grain boundary with widespread secondary cracks in their steady propagation period.

参考文献

[1] Stanzl S E,Tschegg E K,Mayer H.Int J Fatigue,1986; 8:195
[2] Kikukawa M,Ohji K,Ogura K.Trans ASME,1965; 87D:857
[3] Naito T,Ueda H,Kikuchi M.J Soc Materi Sci Jpn,1983; 32:1162
[4] Naito T,Ueda H,Kikuchi M.Metall Mater Trans,1984; 15A:1431
[5] Takeuchi E,Furuya Y,Nagashima N,Matsuoka S.Fatigue Fract Eng Mater Struct,2008; 31:599
[6] Ranc N,Wagner D,Paris P C.Acta Mater,2008; 56:4012
[7] Marines-Garcia I,Paris P C,Tada H,Bathias C,Lados D.Eng Fract Mech,2008; 75:1657
[8] Liu Y B,Yang Z G,Li Y D,Shen S M,Li S X,Hui W J,Weng Y Q.Mater Sci Eng,2008; A497:408
[9] Gonzalo M,Dominguez A.Mech Mater,2008; 40:636
[10] Makino T.Int J Fatigue,2008; 30:1409
[11] Akiniwa Y,Stanzl-Tschegg S,Mayer H,Wakita M,Tanaka K.Int J Fatigue,2008; 30:2057
[12] Sohar C R,Betzwar-Kotas A,Gierl C,Weiss B,Danninger H.Int J Fatigue,2008; 30:1137
[13] Nakajima M,Tokaji K,Itoga H,Ko H N.Fatigue Fract Eng Mater Struct,2003; 26:1113
[14] Tokaji K,Ko H N,Nakajima M,Itoga H.Mater Sci Eng,2003; A345:197
[15] Furuya Y,Matsuoka S,Abe T,Yamaguchi K.Scr Mater,2002; 46:157
[16] Shiozawa K,Lu L.Fatigue Fract Eng Mater Struct,2002; 25:813
[17] Itoga H,Tokaji K,Nakajima M,Ko H N.Int J Fatigue,2003; 25:379
[18] Shiozawa K,Morii Y,Nishino S,Lu L.Int J Fatigue,2006; 28:1521
[19] Sakai T,Sato Y,Oguma N.Fatigue Fract Eng Mater Struct,2002; 25:765
[20] Zhou C E,Qian G A,Hong Y S.Key Eng Mater,2006; 324-325:1113
[21] Wang Q Y,Berard J Y,Rathery S,Bathias C.Fatigue Fract Eng Mater Struct,1999; 22:673
[22] McMahon Jr C J.Eng Fract Mech,2001; 68:773
[23] Taha A,Sofronis P.Eng Fract Mech,2001; 68:803
[24] Nagumo M,Shimura H,Chaya T,Hayashi H,Ochiai I.Mater Sci Eng,2003; A348:192
[25] Nagao A,Kuramoto S,Ichitani K,Kanno M.Scr Mater,2001; 45:1227
[26] Shipilov S A.Sct Mater,2002; 47:301
[27] Page R A,Gerberich W W.Met Trans,1982; 13A:305
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%