欢迎登录材料期刊网

材料期刊网

高级检索

提出了一个极限田溶体合金的团簇模型,在此基础上优化设计了添加Fe和Mn的Ni_(30)Cu_(70)(原子分数,%)固溶体合金成分.在该模型中,固溶的Fe和Mn以Ni为第一近邻形成12配位立方八面体原子团簇(Fe_(1-x)Mn_x)Ni_(12)而分散到Cu基体中,因此极限固溶体合金成分为[M_1/_(13)Ni_(12)/_(13)]30Cu_(70)=[(Fe_(1-x)Mn_xNi_(12)]Cua_(30.3),M=(Fe_(1-x)Mn_x).采用X射线衍射和电化学腐蚀测试等方法,研究了[(Fe_(1-x)Mn_x)Ni_(12)]Cu_(30.3)合金的微观组织与耐腐蚀性能的关系.实验结果表明,对应于极限同溶体状念的[(Fe_(0.75)Mn_(0.25))Ni_(12)]Cua_(30.3)合金,在3.5%NaCl溶液中具有相对好的耐腐蚀性能.

Minor Fe and Mn additions are necessary to enhance the corrosion resistance of com-mercial Cu-Ni alloys. The present paper aims at optimizing the addition amounts of Fe and Mn in CuToNi30 (atomic fraction, %) alloy using a cluster based solid solution model. In this model it as-sumed that one Fe(Mn) atom and twelve Ni atoms formed a cluster consisted of Fe(Mn)-centered and Ni surrounded cube octahedron and the limit solid solution would be composed of isolated Fe(Mn)Ni_(12) clusters embedded in the Cu matrix. Thc ratio of the Fe(Mn) atoms and its surrounding Ni atoms is 1 : 12, and the limit solid solution composition of Fe(Mn) modified Ni_(70)Cu_(30) alloy is [M_1/_(13)Ni_(12/13)]_(30)Cu_(70)=[(Fe_(1-x)Mn_x)Ni_(12)]Cu_(30.3), M=(Fe_(1-x)Mn_x). The OM, XRD and electrochemical corrosion measurements were used to characterize the microstructure and corrosion resistance per-formance of [(Fe_(1-x)Mn_x)Ni_(12)]Cu_(30.3). The results indicated that the solid solubility limitative alloys [(Fe_(0.75)Mn_(0.25))Ni_(12)]Cu_(30.3) has the best corrosion resistance in 3.5%NaCl aqueous solution.

参考文献

[1] Marsden D D.Mater Performance,1978; 17:9
[2] Pearson C.Br Corros J.1972; 7:61
[3] Wang J H,Jiang X X,Li S Z.Acta Metall Sin,1995; 6A:266(王吉会,姜晓霞,李诗卓.金属学报,1995;6A:266)
[4] Efird K D.Corrosion,1977; 33:347
[5] Drolenga L J P,Ijsseling F P,Kolster B H.Mater Corros,1983; 34:167
[6] Popplewell J M,Hart R J.Corras Sci,1973; 13:295
[7] Bailey G L.J Inst Metals,1951; 79:243
[8] Stewart W C,La Que F L.Corrosion,1952; 8:259
[9] Zhu X L,Lin L Y,Lei T Q.Acta Metall Sin,1997; 7:1256(朱小龙,林乐耘,雷廷权.金属学报,1997;7:1256)
[10] Dong C,Wang Q,Qiang J B,Wang Y M,Jiang N,Han G,Li Y H,Wu J,Xia J H.J Phys,2007; 40D:R273
[11] Dong C,Chen W R,Wang Y G,Qiang J B,Wang Q,Lei Y,Monique C D,Dubois J M.J Non-Cryst Solids,2007; 353:3405
[12] Miracle D B.Acta Mater,2006; 54:4317
[13] Bragg W L,Williams E J.Proc R Soc London,1934; 145A:699
[14] Chakrabarti D J,Laughlin D E.Chen S W,Chang Y A.Binary Alloy Phase Diagrams.Materials Park,OH,ASM International,1991:1442
[15] Swartzendruber L J.Phase Diagrams of Binary Iron Alloys.Materials Park,OH,ASM International,1993:131
[16] Gupta K P.Indian Inst Metals,1990; 1:290
[17] Takeuchi A,Inoue A.Mater Trans JIM,2000; 41:1372
[18] Zhang J,Wang Q,Wang Y M,Li C Y,Wen L S,Dong C.J Mater Res,in press
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%