欢迎登录材料期刊网

材料期刊网

高级检索

研究了(Na0.8K0.2)0.5Bi0.5TiO3陶瓷的介电和压电性能,发现陶瓷从室温到500℃温度范围的介电谱中存在两个介电峰,电滞回线显示第一个介电峰由铁电-反铁电相变引起的,温度继续升高,反铁电相由宏畴变为微畴,微畴向顺电相转变导致了第二个介电峰,该峰对应的相变为弥散型相变.室温下陶瓷具有较高的剩余极化强度Pr=29.4μC/cm2和相对低的矫顽电场Ec=2.8kV/mm,极化后的陶瓷显示出较高的压电常数d33=120pC/N和机电耦合系数Kp=28.5%,以及高的频率常数Nφ=2916Hz.m,120℃具有最小的谐振频率温度系数.

参考文献

[1] Smlenskii G A, Isupv V A, Afranovskaya A I, et al. Sov. Phys. Solid St, 1961, 2 (11): 2651-2654.
[2] Takanaka T, Maruyama K I. Jap. J. Appl. Phys., 1991, 30 (9B): 2236-2239.
[3] Park S E, Hong K S. J. Mater. Res., 1997, 12 (8): 2152-2157.
[4] Sasaki A, Chiba T, Mamiya Y, et al. Jap. J. Appl. Phys., 1999, 38: 5564-5567.
[5] Chu Baojin, Chen Daren, Li Guorrong, et al. J. Euro. Ceram. Soc., 2002, 22: 2115-2121.
[6] Said S, Mercurio J P. J. Euro. Ceram. Soc., 2002, 21: 1333-1336.
[7] 王天宝,王列娥,卢永康,等(Wang Tian-Bao et al).硅酸盐学报(Journal ofthe Chinese Ceramic Society),1986,14(1):14-22.
[8] Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics(Academic Press, London and New York), 1971.
[9] Sakatak K, Takenaka T, Naitou Y. Ferroelectrics, 1992, 131: 219-226.
[10] Siny I G, Husson E, Beny J M, et al. Physics B, 2001, 293: 382.
[11] Kreisel J, Glazer A M, Bouvier P, et al. Physical Review B, 2001, 63: 1-10.
[12] Yao X, Chen Z L, Cross L E. J. Appl. Phys., 1983, 54: 3399-3403.
[13] 江向平,方健文,曾华荣,等.物理学报,2000,49:802-806.
[14] Dai X, Digiovanni A, Viehland D. J. Appl. Phys., 1993, 74: 3399-3405.
[15] Chu F, Setter N, Kagantsev A K. J. Appl. Phys., 1993, 74: 5129-5134.
[16] Elkechai O, Manier M, Mercurio J P. Phys. Stat. Sol. (a), 1996, 157: 499-506.
[17] Newnham R. E. Amer. Ceram. Soc. Bull., 1974, 53: 53-58.
[18] Lucata P G, Constantiescu F L, Barb D. J. Am. Ceram. Soc., 1985, 68: 533-539.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%