欢迎登录材料期刊网

材料期刊网

高级检索

采用双反应室激光气相合成纳米粉体装置,以六甲基二硅胺烷((Me3Si)2NH)(Me:CH3)为原料合成了纳米Si/C/N复相粉体,粒径为20 nm~30 nm.研究了纳米Si/C/N复相粉体在8.2 GHz~18 GHz的微波吸收特性,结果表明:纳米Si/C/N复相粉体介电常数的实部(ε′)和虚部(ε″)在8.2 GHz~18 GHz随频率增大而减小,介电损耗(tgδ=ε″/ε′)较高,是较为理想的微波吸收材料;纳米Si/C/N复相粉体在不同基体中的微波吸收特性出现很大差异.纳米Si/C/N复相粉体中的SiC微晶固溶了大量的N原子,形成大量带电缺陷,极化弛豫是吸收微波的主要原因.根据纳米Si/C/N复相粉体与石蜡复合体的实测介电参数,设计出多组在8 GHz~18 GHz范围内微波反射系数R≤-8dB的吸波涂层结构.

参考文献

[1] Niihara K, Izakik K, Kawakami N. Hot-pressed Si3N4-32% nanocomposite from amorphous Si-C-N powder with improved strength above 1200℃ [J]. J Mater Sci Lett, 1990, 10(2):112-116.
[2] Wakai F, Kodama Y, Sakaguchi S, et al. A superplastic covalent crystal composite [J]. Nature, 1990, 344(1): 421-423.
[3] Chen I, Xue L A. Development of superplastic structural ceramics [J]. J Am Ceram, 1990, 73(11): 2585-2591.
[4] Cauchetier M, Croix O, Luce M, et al. Nanometric Si/C/N composite powders: laser synthesis and IR characterization [J]. Journal of the European Ceramic Society, 1991,8(1): 215-218.
[5] Bahloul D, Pereira M, Goursat P. Preparation of silicon carbonitrides from an organosilicon polymer: Ⅱ--thermal behavior at high temperature under argon [J]. J Am Ceram Soc, 1993, 76(5): 1163-1171.
[6] Bendeddouche A, Berjoan R, Beche E, et al. Structural characterization of amorphous SiCxNy chemical vapor deposited coatings [J]. J Appl Phys, 1997, 81(9): 6147-6156.
[7] Li X, Chiba A, Nakata Y, et al. Characterization of ultrafine SiC-Si3N4 composite powder after heat-treatment in Ar+N2 [J]. Materials Science and Engineering A, 1996, 219(1): 95-102.
[8] Dong S, Jiang D, Tan S, et al. Preparation and characterization of nano-structured monolithic SiC and Si3N4/SiC composite by hot isostatic pressing [J]. J Mater Sci Lett, 1997, 16(10): 1080-1083.
[9] Li Y, Liang Y, Zheng F, et al. Laser synthesis of ultrafine Si3N4-SiC powders from hexamethyldisilazane [J]. Materials Science and Engineering A, 1994, 174(1): L23-L25.
[10] Suzuki M, Maniette Y, Nakata Y, et al. Synthesis of silicon carbide-silicon nitride composite ultrafine particles using a carbon dioxide laser [J]. J Am Ceram Soc, 1993, 76(10): 1195-1202.
[11] Suzuki M, Hasegawa Y, Aizawa M,et al. Characterization of silicon carbide-silicon nitride composite ultrafine particles synthesized using a CO2 laser by silicon-29 magic angle spinning NMR and ESR [J]. J Am Ceram Soc, 1995, 78(1): 83-91.
[12] Zhao D L, Zhou W C. Laser synthesis of nanometric Si/C/N composite powders from hexamethyldisilazane and microstructure characterization [A]. In: Yan D S, Guan Z D, eds. Pro of the First China International Conference on High-Performance Ceramics [C]. Beijing: Tsinghua University Press, 1999. 138.
[13] Jonscher A K. Dielectric Relaxation in Solids [M]. London: Chelsea Dielectric Press, 1983. 138.
[14] Debye P. Polar Molecules [M]. New York: Dover, 1945. 257.
[15] Mouchon E, Colomban Ph. Microwave absorbent: preparation, mechanical properties and rf-microwave conductivity of SiC (and/or mullite) fiber reinforced Nasicon matrix composites [J]. J Mater Sci, 1996, 31(2): 323-331.
[16] Garnett J C M. Colours in metal glasses in metallic films [J]. Philosophical Transaction of The Royal Society of London, 1904, 203(2): 385-391.
[17] Sihvola A H, Kong J A. Effective permittivity of dielectric mixture [J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(4): 420-427.
[18] 梁兵. 结构型吸波材料研究 [J]. 航空材料学报,1993,13(4): 34-39.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%