对颗粒增强复合材料界面模型与界面相模型的关系进行了研究.通过界面位移和应力的间断量建立了与球形粒子薄界面相等效的不完善界面条件和线弹簧界面条件.根据线弹簧界面和具有任意弹性模量的薄界面相之间的等效关系,得到了弹簧常数的表达式.数值结果表明:当界面相和基体的模量比值较小时,与薄界面相模型的精确解相比较,不完善界面和线弹簧界面的解有很高的精确性.另外针对线弹簧模型的性质,讨论了界面可能的法向嵌入,并建立了保证无嵌入的条件.
参考文献
[1] | Jasiuk I, Tsuchida E, Mura T. The sliding inclusion under shear [J]. Int J Solids Struct, 1987, 23(10): 1373-1385. |
[2] | Hashin Z. The spherical inclusion with imperfect interface [J]. J Appl Mech, 1991, 58(2): 444-449. |
[3] | Zhong Z, Meguid S A. On the imperfectly bonded spherical inclusion problem [J]. J Appl Mech, 1999, 66(4): 839-846. |
[4] | Shen H, Schiavone P, Ru C Q, et al. Analysis of internal stress in an elliptic inclusion with imperfect interface in plane elasticity [J]. Math Mech Solids, 2000, 5(4): 501-510. |
[5] | Gao Z. A circular inclusion with imperfect interface: Eshel-by's tensor and related problems [J]. J Appl Mech, 1995, 62(4): 860-866. |
[6] | Needleman A. A continuum model for void nucleation by inclusion debonding [J]. ASME J Appl Mech, 1987, 54(3): 525-553. |
[7] | Benveniste Y, Miloh T. Imperfect soft and stiff interfaces in two-dimensional elasticity [J]. Mech Mater, 2001, 33(6): 309-323. |
[8] | Hashin Z. The interphase/imperfect interface in elasticity with application to coated fiber composites [J]. J Mech Phys Solids, 2002, 27(12): 2509-2537. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%