采用原位合成方法制备了TiB2超细颗粒增强ZL109复合材料,对材料进行了高温拉伸蠕变实验.实验结果表明,复合材料在高温恒应力条件下,表现出高的名义应力指数和高的名义蠕变激活能,优于纯Al和ZL109合金,而且比常规外加颗粒复合材料具有更好的高温蠕变性能.引入门槛应力概念,复合材料的蠕变实验结果能够用微观结构不变模型来解释,说明复合材料的蠕变受到基体点阵扩散的控制.复合材料的蠕变断裂行为可以用Monkman-Grant经验公式来描述,蠕变断裂特征为延性断裂.
参考文献
[1] | Dragone T L, Nix W D. Steady state and transient creep properties of an aluminum alloy reinforced with alumina fibers [J]. Acta Metall Mater, 1992, 40(10): 2781-2791. |
[2] | Gonzalez-Doncel G, Sherby O D. High temperature creep behavior of metal matrix aluminum-SiC composites [J]. ActaMetallMater, 1993, 41(10): 2797-2805. |
[3] | Pandey A B, Mishra R S, Mahajan Y R. Creep behaviour of an aluminium-silicon carbide particulate composite [J].Scripta Metall Mater, 1990, 24(8): 1565- 1570. |
[4] | Pandey A B, Mishra R S, Mahajan Y R. Steady state creep behaviour of silicon carbide particulate reinforced aluminum composites [J]. Acta Metall Mater, 1992, 40(8): 2045-2052. |
[5] | Pandey A B, Mishra R S, Mahajan Y R. High-temperature creep of Al-TiB2 particulate composites [J]. Mater Sci Eng A, 1994, A189(1-2): 95-104. |
[6] | 周清,马宗义,赵杰,等.弥散质点和SiC颗粒复合强化铝基复合材料蠕变形变与断裂[J].金属学报,1998,34(1):107-112. |
[7] | Mishra R S, Pandey A B. Some observations on the hightemperature creep behavior of 6061 Al-SiC composites [J].Metall Trans A, 1990, 21A(7): 2089-2090. |
[8] | Cadek J, Sustek V, Pahutova M. Is creep in discontinuous metal matrix composites lattice diffusion controlled [J]. Mater Sci Eng A, 1994, A174(2): 141-147. |
[9] | Cadek J, Oikawa H, Sustek V. Threshold creep behaviour of discontinuous aluminium and aluminium alloy matrix composites: An overview [J]. MaterSci Eng A, 1995, A190(1-2): 9-23. |
[10] | Li Y, Langdon T G. Creep behavior of an Al-6061 metal matrix composite reinforced with alumina particulates [J]. Acta Mater, 1997, 45(11): 4797-4806. |
[11] | Li Y, Mohamed F A. An investigation of creep behavior in an SiC-2124 Al composite [J]. Acta Mater, 1997, 45(11):4775-4785. |
[12] | Mohamed F A, Park K T, Lavernia E J. Creep behavior of discontinuous SiC-Al composites [J]. Mater Sci Eng, 1992,A150(1): 21-35. |
[13] | 黄明华,王浩伟.ZL109合金的变载荷蠕变行为研究[J].航空材料学报,2003,23(增刊):92-94. |
[14] | Purushothman S, Tien J K. Role of back stress in the creep behavior of particle strengthened alloys [J]. Acta Metall,1978, 26(4): 519-528. |
[15] | Bird J E, Mukherjee A K, Dorn J E. Correlations between high-temperature creep behavior and structure [A]. In:Brandon D G, Rosen A, eds. Quantitative Relation Between Properties and Microstructure [C]. Jerusalem: Israel Universities Press, 1969. 225-342. |
[16] | Sherby O D, Burke P M. Mechanical behavior of crystalline solids at elevated temperature [J]. Prog Mater Sci, 1968,13: 323-390. |
[17] | Mohamed F A, Langdon T G. Transition from dislocation climb to viscous glide in creep of solid solution alloys [J].Acta Metall, 1974, 22 (6): 779- 788. |
[18] | Sherby O D, Klundt R H, Miller A K. Flow stress, subgrain size, and subgrain stability at elevated temperatures [J].Metall Trans A, 1977, 8A(6): 843-850. |
[19] | Monkman F C, Grant N J. An empirical relationship between rupture life and minimum creep rate in creep rupture tests [J]. ProcASTM, 1956, 56: 593-620. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%