欢迎登录材料期刊网

材料期刊网

高级检索

利用有限元模型分析了颗粒增强型金属基复合材料(PMMCs)Al/SiC的颗粒尺寸对复合材料在不同应变率下的动态特性的影响.采用有限元三维立方体单胞模型嵌入单个和多个球形增强颗粒,颗粒直径分别为1 6μm和7.5μm,多颗粒模型内部颗粒随机分布.基体材料假设为弹塑性,应变强化及应变率强化均符合指数规律.模拟结果表明:颗粒尺寸、颗粒体积含量及应变率对金属基复合材料的动态特性的影响是相互耦合的.颗粒体积含量一定时,颗粒尺寸越小,复合材料流动应力越高;颗粒含量越高,材料流动应力越高;应变率越高,材料流动应力越高.

参考文献

[1] 郭成,郭生武,程羽,等.SiC颗粒增强铝合金基梯度复合材料拉伸力学性能及其评价[J].复合材料学报,2003,20(4):23-28.Guo Cheng, Guo Shengwu, Cheng Yu, et al. Tensile mechanical properties and the evaluation of aluminium alloy matrix gradient composites reinforced with SiC particles [J].Acta Materiae Compositae Sinica , 2003, 20(4): 23-28.
[2] 郭成,程羽,易树清,等.SiC颗粒增强铝合金基梯度复合材料的制备与压缩性能[J].复合材料学报,1999,16(1):8-13.Guo Cheng, Cheng Yu, Yi Shuqing, et al. Study of fabrication and compressive performance of aluminium alloy matrix gradient composites reinforced with SiC particles [J]. Acta Materiae Compositae Sinica, 1999, 16(1): 8-13.
[3] 权高峰,柴东朗,宋余九,等.增强体种类及含量对金属基复合材料力学性能的影响[J].复合材料学报,1999,16(2):62-66.Quan Gaofeng, Chai Donglang, Song Yujiu, et al. Effects of category and content of reinforcements on mechanical properties of metal matrix composites [J]. Acta Materiae Compositae Sinica, 1999, 16(2): 62-66.
[4] 罗兵辉,柏振海.SiC增强颗粒含量对6066铝合金组织及力学性能的影响[J].轻合金加工技术,2001,29(8):43-46.Luo Binghui, Bai Zhenhai. Microstructure characteristic and mechanical properties of 6066Al/SiCp composites [J]. Light Alloy Fabrication Technology, 2001, 29(8): 43-46.
[5] Kiser M T , Zok F W, Wilkinson D S. Plastic flow and fracture of particulate metal matrix composite [J]. Acta Mater,1996, 44(9): 3465-3476.
[6] 徐绯,李玉龙,郭伟国.高应变率下颗粒形状、含量和基体特性对金属基复合材料力学行为的影响[J].复合材料学报,2003,20(6):36-41.Xu Fei, Li Yulong, Guo Weiguo. Influences of particle shape, volume fraction and matrix materials on the compressive behavior of MMCs [J]. Acta Materiae Compositae Sinica, 2003, 20(6): 36-41.
[7] Lloyd D J. Particle reinforced aluminum and magnesium matrix composites [J]. Int Mater Rev, 1994, 39(1): 1- 23.
[8] 刘龙飞,戴兰宏,杨国伟.SiC颗粒增强金属基6151Al复合材料中的增强颗粒尺寸效应[J].湘潭大学自然科学学报,2001,23(4):46-50.Liu Longfei, Dai Lanhong, Yang Guowei. Reinforced particle dimension effect in SiCp particle reinforced metal based 6151Al composite [J]. Natural Science Journal of Xiangtan University, 2001, 23(4): 46-50.
[9] 刘龙飞,戴兰宏,凌中,等.冲击剪切载荷下SiCp/6151Al复合材料变形局部化及增强颗粒尺寸效应[J].复合材料学报,2002,19(4):51-55.Liu Longfei, Dai Lanhong, Ling Zhong, et al. Localized deformation and particle size-effect in particle-reinforced SiCp/6151Al composites under impulsive shear loadings [J]. Acta Materiae Compositae Sinica, 2002, 19(4): 51-55.
[10] 戴兰宏,凌中,白以龙.颗粒增强金属基复合材料变形强化中的应变梯度效应[J].高压物理学报,2001,15(1):5-11.Dai Lanhong, Ling Zhong, Bai Yilong. Strain gradient effects on the strengthening behaviors of particle reinforced metal matrix composites [J]. Chinese Journal of High Pressure Physics,2001, 15(1): 5-11.
[11] Xue Z, Huang Y, Li M. Particle size effect in the metallic materials: A study by the theory of mechanism-based strain gradient plasticity [J]. Acta Materialia, 2002, 50(1):149-160.
[12] Zhang H, Ramesh K T, Chin E S C. High strain rate response of aluminum 6092/BC composites [J]. Materials Science and Engineering, 2004, 384(1): 26-34.
[13] 凌中.2124Al/SiC复合材料的动态变形行为及微结构效应[J].力学学报,1998,30(4):442-448.Ling Zhong. The deformation behavior and microstructure effect of 2124Al/SiCp under impact loading [J]. Acta Mechanical Sinica, 1998, 30(4): 442-448.
[14] 唐春安,傅宇方,林鹏.颗粒增强复合材料基体破坏过程的数值模拟分析[J].复合材料学报,1999,16(3):110-117.Tang Chunan, Fu Yufang, Lin Peng. Numerical approach to failure process in brittle and heterogeneous matrix filled with particles [J]. Acta Materiae Compositae Sinica , 1999, 16(3): 110-117.
[15] 唐春安,傅宇方,朱万成.界面性质对颗粒增强复合材料破坏模式影响的数值模拟分析[J].复合材料学报,1999,16(4):112-120.Tang Chunan, Fu Yufang, Zhu Wancheng. Numerical approach to effect of interface properties on failure modes in particle filled composite [J]. Acta Materiae Compositae Sinica, 1999, 16(4): 112-120.
[16] Fleck N A, Muller G M, Ashby M F, etal. Strain gradient plasticity: Theory and experiments [J]. Acta Mater, 1994,42(2) : 475-487.
[17] Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity--Ⅰ . Theory [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(6): 1239-1263.
[18] Huang Y, Gao H, Nix W D, et al. Mechanism-based strain gradient plasticity--Ⅱ . Analysis [J]. Journal of the Mechanics and Physics of Solids, 2000, 48 (1): 99- 128.
[19] Huang Y, Qu S, Hwang K C, et al. A conventional theory of mechanism-based strain gradient plasticity [J]. International Journal of Plasticity, 2004, 20(4-5): 753-782.
[20] Nix W D, Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J Mech Phys Solids, 1998, 46(3): 411-425.
[21] Xu D, Schmauder S, Soppa E. Influence of geometry factors on the mechanical behavior of particle and fiber-reinforced composites [J]. Computational Materials Science, 1999, 15(3): 295-301.
[22] Hu G K, Guo G, Baptiste D. A micromechanical model of influence of particle fracture and particle cluster on mechanical properties of metal matrix composites [J]. Computational Materials Science, 1998, 9(3-4): 420-430.
[23] Leon L, Mishnaevky Jr. Three-dimensional numerical testing of microstructures of particle reinforced composites [J]. Acta Materialia, 2004, 52(14): 4177-4188.
[24] Eckdchlager A, Han W, Bohm H J. A unit cell model for brittle fracture of particles embedded in a ductile matrix [J],Computational Materials Science, 2002, 25 ( 1- 2): 85- 91.
[25] Han W, Eckdchlager A, Bohm H J. The effects of three-dimensional multi-particle arrangements on the mechanical behavior and damage initiation of particle-reinforced MMCs[J]. Composites Science and Technology, 2001, 61(11):1581-1590.
[26] Bao G, Lin Z. High strain rate deformation in particle reinforced.metal matrix composites [J]. Acta Mater, 1996, 44(3): 1011-1019.
[27] Chawla N, Ganesh V V, Wunsch B. Three-dimensional (3D) microstructure visualization and finite element modeling of mechanical behavior of SiC particle reinforced aluminum the composites [J]. Scripta Materialia, 2004, 51(3):161-165.
[28] Li Y, Ramesh K T, Chin E S C. The compressive viscoplastic response of an A359/SiCp metal-matrix composite and of the A359 aluminum alloy matrix [J]. International Journal of Solid and Structures, 2000, 37(51): 7547-7562.
[29] Li Y, Ramesh K T, Chin E S C. Viscoplastic deformations and compressive damage in an A359/SiCp metal-matrix composite [J]. Acta Mater, 2000, 48(7): 1563-1573.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%