复合材料学报, 2005, 22(5): 120-124. doi: 10.3321/j.issn:1000-3851.2005.05.019
低分子量聚碳硅烷制备3D-Cf/SiC复合材料
邹世钦
1,
, 张长瑞
2,
{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"A novel process for synthesizing nano-ceramics powders, named mechanical & thermal activation processing, is discussed in the present paper It is a processing based on thermal activation in liquid phase (molten salt) after mechanical activation. The nanometer-sized TiC particles (15-20nm) have been synthesized by the method, and analyzed by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) spectroscopy. An interface interaction between liquid (molten salt) and solid (final product particles) phases plays a dominating role for the control of product particles size. The mechanism for the formation of nanometer-sized TiC particles has been discussed.","authors":[{"authorName":"X.L.Cui","id":"39188752-c4e2-43e3-94c6-39c544825da3","originalAuthorName":"X.L.Cui"}],"categoryName":"|","doi":"","fpage":"319","id":"bf4dc3c8-5c35-4053-9503-e62bb184f714","issue":"3","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"bb111a2d-4683-415b-a4f7-b460ad632464","keyword":"TiC","originalKeyword":"TiC"},{"id":"f7ea1246-b491-4897-9c41-8f11520f68df","keyword":"null","originalKeyword":"null"},{"id":"882aed2c-282d-4d5d-ab10-618384b923cb","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1006-7191_2005_3_36","title":"THE MECHANISM FOR NANOMETER-SIZED TiC SYNTHESIZING BY MECHANICAL & THERMAL ACTIVATION PROCESSING","volume":"18","year":"2005"},{"abstractinfo":"采用溶剂蒸发法生长出透明的带隙宽度为2.96 eV的γ-CuI晶体.在紫外光激发下,该晶体在410、430 nm处分别呈现有近带边发射峰,另在720 nm附近还出现一个与样品碘缺陷有关的宽发射带.经碘退火后,样品720 nm发射带被基本抑制,而在420 nm处出现了一个更强的近带边发射峰.使用扫描相机分别测量了γ-CuI晶体各发射峰(带)的衰减时间谱,其中近带边发射峰的发光衰减时间常数均在数十皮秒量级,表明γ-CuI晶体具有极快的时间响应特性;而720 nm发射带的发光衰减时间常数主要在数十纳秒量级.X射线激发下,γ-CuI晶体具有435 nm近带边发射峰和680 nm发射带,其近带边发射对X射线能量响应的测量结果表明,当Ex<49.1 keV时,γ-CuI晶体闪烁光快分量对X射线的探测效率相对较高.","authors":[{"authorName":"李锋锐","id":"177089af-e760-47e1-b71c-87b598524463","originalAuthorName":"李锋锐"},{"authorName":"顾牡","id":"bfb8e2ee-382a-452f-9886-15a9b75cefc6","originalAuthorName":"顾牡"},{"authorName":"何徽","id":"4175380b-3956-4aaa-aec5-2c139855ba71","originalAuthorName":"何徽"},{"authorName":"畅里华","id":"fe7de018-ad20-4a84-8de1-33543c31c80d","originalAuthorName":"畅里华"},{"authorName":"温伟峰","id":"02ee75aa-b7c0-44c5-bc89-d255d92963e1","originalAuthorName":"温伟峰"},{"authorName":"李泽仁","id":"17b26e0e-ed16-4a0c-91c7-693360e6f226","originalAuthorName":"李泽仁"},{"authorName":"陈亮","id":"3f3ab5a9-ad71-481c-9f08-1cefefcc5cfd","originalAuthorName":"陈亮"},{"authorName":"刘金良","id":"ba58a858-622b-4050-9fb1-9e588ffeac87","originalAuthorName":"刘金良"},{"authorName":"欧阳晓平","id":"68310c78-1cde-4056-a3b1-70295715049a","originalAuthorName":"欧阳晓平"},{"authorName":"刘小林","id":"0cf048b3-9444-4937-831d-261aa45446ea","originalAuthorName":"刘小林"},{"authorName":"刘波","id":"9d6f963a-e0aa-45ba-b7c1-94679cd20f52","originalAuthorName":"刘波"},{"authorName":"黄世明","id":"733f84d6-7f88-417f-a280-ffdaa0301139","originalAuthorName":"黄世明"},{"authorName":"倪晨","id":"5fc59359-3b06-4573-aac3-7c6e80be5780","originalAuthorName":"倪晨"}],"doi":"10.15541/jim20160262","fpage":"163","id":"9e27b69a-8f9d-4d28-9af1-cd4f74a68329","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"a19e8bba-d48d-4665-bcb3-4b76af34344d","keyword":"γ-CuI晶体","originalKeyword":"γ-CuI晶体"},{"id":"821d2eef-5738-449f-be94-03ec8856a7b4","keyword":"超快闪烁体","originalKeyword":"超快闪烁体"},{"id":"80485af4-9d08-4890-be8f-fa3fe7a78364","keyword":"衰减时间","originalKeyword":"衰减时间"},{"id":"ab84476d-cf8b-4288-b152-e421fa70e394","keyword":"能量响应","originalKeyword":"能量响应"}],"language":"zh","publisherId":"wjclxb201702008","title":"γ-CuI晶体的发光衰减时间和对X射线的能量响应","volume":"32","year":"2017"},{"abstractinfo":"为了探索新的透红外材料,本文研究了As2Se3-AsTe-CuI系统玻璃的形成区,制备了一系列不同AsTe和CuI含量的玻璃. 研究表明:该系统玻璃的形成范围相当大,As2Se3-AsTe二元系统可以任何比例形成玻璃,As2Se3-CuI和AsTe-CuI二元系统, 当CuI含量分别达70和40mol%时,仍可形成稳定的玻璃, 直径在20mm厚度在50mm以上的玻璃样品很容易得到. 研究了部分玻璃样品的远红外光谱,结果表明:该系统玻璃的结构单元主要是:[As(SeTe)3-xIx] (x=0~3)、[As2Te4]和[CuI4],随玻璃的成分不同,这些结构单元的相对比例也不同,根据研究结果提出了该系统玻璃的结构模型.","authors":[{"authorName":"陈玮","id":"a46e4405-53d8-4494-b2a8-01da895709b2","originalAuthorName":"陈玮"},{"authorName":"程继健","id":"5f242a26-034c-4cbc-ad3d-aa6274cca819","originalAuthorName":"程继健"}],"doi":"10.3321/j.issn:1000-324X.1999.01.004","fpage":"23","id":"40387053-1bb9-4343-9355-cc180d2afdbe","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"7759c2b4-04f6-4a78-8e43-8a694723eea0","keyword":"硫系卤化物玻璃","originalKeyword":"硫系卤化物玻璃"},{"id":"24fd72b8-5b5c-4efd-b9b9-0bfa34529d39","keyword":"玻璃形成","originalKeyword":"玻璃形成"},{"id":"300561b3-0f22-4c7a-aa1f-aa00f8301b92","keyword":"玻璃结构","originalKeyword":"玻璃结构"},{"id":"8895a730-0643-4751-9a4a-0bf515178eb1","keyword":"红外透射材料","originalKeyword":"红外透射材料"}],"language":"zh","publisherId":"wjclxb199901004","title":"As2Se3-AsTe-CuI系统玻璃的形成和结构研究","volume":"14","year":"1999"},{"abstractinfo":"为了探索新的透红外材料,本文研究了As2
Se3-AsTe-CuI系统玻璃的形成区,制备了一系列不同ASTe和CuI含量的玻璃.研究表明:该系统玻璃的形成范围相当大,AS2Se3-ASTe二元系统可以任何比例形成玻璃,AS2Se3-CuI和AsTe-CuI二元系统,当CSI含量分别达70和40mol%时,仍可形成稳定的玻璃,直径在20mm厚度在50mm以上的玻璃样品很容易得到.研究了部分玻璃样品的远红外光谱,结果表明:该系统玻璃的结构单元主要是:[AS(SeTe)3-xIx](x=0~3)、[As2Te4]和[CuI4],随玻璃的成分不同,这些结构单元的相对比例也不同,根据研究结果提出了该系统玻璃的结构模型.","authors":[{"authorName":"陈玮","id":"f684278b-c79f-42dd-9b64-310a956bd8e4","originalAuthorName":"陈玮"},{"authorName":"程继健","id":"7d583bb3-7bfe-40a3-8a48-7b895718a88c","originalAuthorName":"程继健"}],"categoryName":"|","doi":"","fpage":"23","id":"a4375d32-d8ad-4b74-99af-5d65e3eb4df7","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"46b46dfb-d7b7-48e7-abb5-54ebd0755c9b","keyword":"硫系卤化物玻璃","originalKeyword":"硫系卤化物玻璃"},{"id":"46e264db-5a9b-4881-9ae3-db29923230ee","keyword":"null","originalKeyword":"null"},{"id":"0ef64f31-4786-45f0-ac71-f2b0ba8b6f1f","keyword":"null","originalKeyword":"null"},{"id":"4f145849-5544-43d0-8e8d-fee538eb5318","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1000-324X_1999_1_19","title":"As2Se3-AsTe-CuI系统玻璃的形成和结构研究","volume":"14","year":"1999"},{"abstractinfo":"以粗碘和硫酸铜为原料,水合肼为还原剂,利用微乳液法合成了六边形薄片状γ-CuI晶体.采用XRD和SEM手段研究了微乳液工艺技术条件对合成γ-CuI晶相组成和微观形貌的影响.结果表明,表面活性剂CTAB用量、水含量和反应物浓度对微乳液法制备的γ-CuI晶相组成和晶体形状没有太大影响,但对晶体尺寸具有较大影响.适宜的微乳液制备工艺条件能产生适当的界面膜强度,有效控制碘化压铜晶体尺寸.CTAB-正戊醇-环己烷-水体积比为3∶3∶7∶10,硫酸铜溶液0.1mol/L和碘化铵溶液0.2mol/L,常温下500r/min搅拌2h合成产物为六边形薄片状γ-CuI.","authors":[{"authorName":"刘飞","id":"daf5416b-d64c-4ac9-9b25-844db4240794","originalAuthorName":"刘飞"},{"authorName":"祝博","id":"11d2b6b3-249f-4e22-a57e-0bc715935521","originalAuthorName":"祝博"},{"authorName":"王晓丹","id":"8bad9098-a21d-4a75-ae94-1d3bbeb9d395","originalAuthorName":"王晓丹"},{"authorName":"曹建新","id":"3ec0031f-7fa7-4245-bc95-53bc491c9e86","originalAuthorName":"曹建新"}],"doi":"","fpage":"5","id":"7940610d-c66e-470f-90fe-8429ac037a57","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"2a54fd44-8b09-4e93-a695-827a9dacc841","keyword":"γ-CuI微乳液法","originalKeyword":"γ-CuI微乳液法"},{"id":"9b76fef0-afb8-4a1d-aaad-7dbfb37c7735","keyword":"六边形薄片状","originalKeyword":"六边形薄片状"},{"id":"868f5428-419d-416e-8485-35e0f5b587e9","keyword":"晶体尺寸","originalKeyword":"晶体尺寸"},{"id":"c4772b37-52bc-4106-8b06-a973c2a9c183","keyword":"微观形貌","originalKeyword":"微观形貌"}],"language":"zh","publisherId":"cldb201210002","title":"微乳液法制备六边形薄片状γ-CuI晶体的研究","volume":"26","year":"2012"},{"abstractinfo":"用简单的电化学方法制备出了机械性能较强的CuI半导体膜,这种半导体膜是由大量的三角形片状微粒组成的. 利用交流阻抗方法在pH值分别为0、2、4和7的0.5 mol/L Na2SO4溶液中研究了这种膜电极的电化学性质. 研究发现,溶液pH值对CuI半导体膜的阻抗有较大的影响,pH值越小则电化学反应电阻就越大;同时,溶液的pH值也对CuI半导体膜电极的表面态有着较大的影响,pH值越大表面态密度越大. 在pH值为0的Na2SO4溶液中测得CuI半导体的Efb为0.023 V(vs.SCE).","authors":[{"authorName":"王钦忠","id":"fb7a3990-b097-463d-b7b5-400ef074ce7b","originalAuthorName":"王钦忠"},{"authorName":"汪正浩","id":"42e6acf9-a2ac-4768-967e-b762f8ddaeab","originalAuthorName":"汪正浩"}],"doi":"10.3969/j.issn.1000-0518.2006.10.020","fpage":"1161","id":"370e8eca-13aa-42a9-a9e1-9da9f1f8e9db","issue":"10","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"5305aff4-ed18-4d0e-8181-553a412a1212","keyword":"CuI半导体","originalKeyword":"CuI半导体"},{"id":"3cb43d41-b410-46e9-86c7-27b908371b09","keyword":"交流阻抗","originalKeyword":"交流阻抗"},{"id":"d9af7b7e-f22c-47bb-a04e-463385964eba","keyword":"平带电位","originalKeyword":"平带电位"}],"language":"zh","publisherId":"yyhx200610020","title":"CuI半导体膜的电化学制备与性质","volume":"23","year":"2006"},{"abstractinfo":"应用浸渍涂膜法制备了CuI固体电解质薄膜,组装了DSSC电池.用扫描电镜观察了CuI薄膜的表面形貌,四探针电阻仪测定了CuI薄膜的电阻率,XJCM-8太阳电池测试仪测试了DSSC电池的性能结果表明:添加适量的离子液体可以有效地抑制CuI晶粒的生长;提高CuI晶粒与多孔TiO2薄膜孔径尺寸的相配度;减小CuI薄膜的电阻率.这些都是影响CuI固体电解质色素增感太阳能电池性能及稳定性的重要因素.","authors":[{"authorName":"刘丽红","id":"82f678e8-b1fe-48c2-b49a-7526b4a85a3f","originalAuthorName":"刘丽红"},{"authorName":"胡志强","id":"8f613482-0cab-43af-863b-982d5fec81a2","originalAuthorName":"胡志强"},{"authorName":"张晨宁","id":"5a3f51f0-43fd-4838-bb84-c77d48e97ac0","originalAuthorName":"张晨宁"},{"authorName":"高岩","id":"4c65f04e-95c0-4917-a61f-6282e7c07284","originalAuthorName":"高岩"},{"authorName":"卢珊珊","id":"abf8896f-91ac-4dd6-b0ee-79bc55162dde","originalAuthorName":"卢珊珊"}],"doi":"10.3969/j.issn.1007-4252.2006.06.012","fpage":"517","id":"e9edfeeb-081f-4868-802e-5e9136ed9820","issue":"6","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"3f4db422-12e5-4d43-878a-6de280e166e4","keyword":"TiO2薄膜","originalKeyword":"TiO2薄膜"},{"id":"9217d032-c5fd-4c12-80f3-e529419790ba","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"994e65ac-f992-4540-83d4-285900488bbf","keyword":"CuI固体电解质","originalKeyword":"CuI固体电解质"},{"id":"93b345df-7237-463e-9947-da6df2dbd182","keyword":"色素增感太阳能电池","originalKeyword":"色素增感太阳能电池"}],"language":"zh","publisherId":"gnclyqjxb200606012","title":"离子液体对CuI固体电解质色素增感太阳能电池性能的影响","volume":"12","year":"2006"},{"abstractinfo":"以粗碘和硫酸铜为原料,水合肼为还原剂,利用液相法和微乳液法合成了不同晶形γ-CuI晶体.采用XRD和SEM研究了液相法和微乳液工艺技术条件对合成γ-CuI微观结构的影响,分析了具有不同微观结构γ-CuI对其导电性能的影响.结果表明,分别以聚乙二醇(PEG-6000)和柠檬酸为表面活性剂,采用液相法常温下500 r/min反应30 min可制备出纳米球形和三角锥形γ-CuI.按CTAB-正戊醇-环己烷-水配比3∶3∶7∶10分别配制硫酸铜和碘化铵微乳液,常温下500 r/min反应2h可制备出六边形薄片状γ-CuI.不同微观形貌和粒径分布对γ-CuI产品电导率具有较大的影响.纳米球形γ-CuI电导率最小,为4.9 Ω·cm.","authors":[{"authorName":"刘飞","id":"60f2b261-49b9-4de8-85c9-ee7ffaa85aa9","originalAuthorName":"刘飞"},{"authorName":"祝博","id":"21e25a56-d402-482f-99b1-819b7b0aec08","originalAuthorName":"祝博"},{"authorName":"王晓丹","id":"8d4725fe-f344-4d3b-bd54-9def95c411c7","originalAuthorName":"王晓丹"},{"authorName":"曹建新","id":"8355c0b3-3cfd-4f25-a296-9e70c09dc799","originalAuthorName":"曹建新"}],"doi":"","fpage":"461","id":"13be8f7f-2541-418c-bd5f-284e21ac47d7","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"fe4e5bbc-bff9-46d9-b2e4-72873a726949","keyword":"γ-CuI晶体","originalKeyword":"γ-CuI晶体"},{"id":"fb6e4cb5-08e8-4cbd-9d43-11dd4f53d03b","keyword":"电导率","originalKeyword":"电导率"},{"id":"f94759cf-8efb-426b-8cd4-a2f3ffae7241","keyword":"液相法","originalKeyword":"液相法"},{"id":"27aec97e-95dd-48eb-9bd7-93dfce7ad15e","keyword":"微乳液法","originalKeyword":"微乳液法"}],"language":"zh","publisherId":"rgjtxb98201202039","title":"多晶形γ-CuI晶体的制备与导电性能表征","volume":"41","year":"2012"},{"abstractinfo":"近日,承钢公司试炼管线钢X70、卷板C700L获成功,钢坯成分、气体含量、铸坯质量等指标均达到标准要求。管线钢X70是具有高强度、高韧性和良好焊接性能的高级别管线。提钒钢轧二厂在总结以往管线钢生产经验的基础上,于4月15日对X70钢组织试制,","authors":[],"doi":"","fpage":"20","id":"3a308534-2a40-42ae-bee1-af6b3c298eed","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"a55d3d91-be67-4b53-95a5-3cbaea713c2b","keyword":"X70","originalKeyword":"X70"},{"id":"229c0c98-a8a1-478d-9dfe-bcfd2d346d9f","keyword":"钢种","originalKeyword":"钢种"},{"id":"2158eb93-89e1-48dd-a9ce-d883101cfa13","keyword":"试炼","originalKeyword":"试炼"},{"id":"906e8506-bc5a-44e9-a176-5c0b370b2f6c","keyword":"管线钢","originalKeyword":"管线钢"},{"id":"e83a4549-5b86-445b-ba47-0daebf0e6426","keyword":"气体含量","originalKeyword":"气体含量"},{"id":"74f02146-34a8-46f2-b7ea-282a030135a0","keyword":"铸坯质量","originalKeyword":"铸坯质量"},{"id":"403dd87e-86e9-4960-8445-38f91521235d","keyword":"焊接性能","originalKeyword":"焊接性能"},{"id":"6fff9cb7-ca38-4391-a477-4492f2bfb1aa","keyword":"生产经验","originalKeyword":"生产经验"}],"language":"zh","publisherId":"gt201107006","title":"承钢公司成功试炼X70、C700L两钢种","volume":"46","year":"2011"},{"abstractinfo":"采用动电位极化和电化学阻抗法研究了X80和X70管线钢在0.5 mol/L NaHCO3+0.02 mol/L NaCl溶液中的腐蚀行为,并通过电容测量方法对其腐蚀机理进行了探讨.结果表明:在0.5 mol/L NaHCO3+0.02 mol/L NaCl溶液中,X80管线钢的点腐蚀电位Epit比X70钢的要正一些,发生点腐蚀的倾向性更小.Mott-Sehottky分析表明:X80比X70管线钢表面钝化膜内的施主密度更低,缺陷数量更少,从而减少了点腐蚀萌生的潜在位置,使X80钢比X70钢具有更好的耐点蚀性能.","authors":[{"authorName":"梁平","id":"397acfaf-1512-456b-aa05-3d7c0957629f","originalAuthorName":"梁平"},{"authorName":"李晓刚","id":"e99a214d-00dd-458d-b4b6-5e6c3f73cd66","originalAuthorName":"李晓刚"},{"authorName":"杜翠薇","id":"073d7e63-dd0f-4dd2-8e36-89147f58595d","originalAuthorName":"杜翠薇"},{"authorName":"陈旭","id":"35453057-6756-4cb1-afaa-69e3561ec564","originalAuthorName":"陈旭"}],"doi":"","fpage":"657","id":"5cb88c02-1881-4d30-8f01-09738e1301fb","issue":"11","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"7f748552-9069-48e5-bd2d-bc9b9c4678a8","keyword":"X80管线钢","originalKeyword":"X80管线钢"},{"id":"50bc4bc6-a2ab-48eb-bbbf-bacf49343451","keyword":"点蚀","originalKeyword":"点蚀"},{"id":"e2b6b7df-5311-4c33-9660-e10d74eb1047","keyword":"莫特一肖特基分析","originalKeyword":"莫特一肖特基分析"}],"language":"zh","publisherId":"fsyfh200811006","title":"X80管线钢在0.5 mol/L NaHCO3+0.02 mol/L NaCl溶液中的点腐蚀性能","volume":"29","year":"2008"}],"totalpage":4014,"totalrecord":40136}