采用梁函数组合法对功能梯度复合材料矩形板进行动力特性分析,提出了适用于每边任取简支、固定、自由边界之一(包括36种边界)、材料功能梯度沿厚度任意分布的矩形板固有频率与振型的解析解一般表达式;在简化情况下,给出了各种边界条件功能梯度矩形板固有频率解的直接显式.所给出的固有频率与振型解的结果可用于功能梯度板的动力分析,工程上应用广泛,简明实用.
参考文献
[1] | Koizumi M. The concept of FGM [J]. Ceramic Trans,Functionally Gradient Materials, 1993, 34: 3- 10. |
[2] | Hirai T, Chen L. Recent and prospective development of functionally graded materials in Japan [J]. Mater Sci Forum, 1999, 308: 509-514. |
[3] | Chen W Q, Ding H J. Bending of functionally graded piezoelectric rectangular plates [J]. Acta Mech Solida Sinica ,2000, 13:312-319. |
[4] | Cheng Z Q, Lim C W, Kitipornchai S. Three-dimensional asymptotic approach to inhomogeneous and laminated piezoelectric plates[J]. Int J Solids Struct, 2000, 37:3153-3175. |
[5] | Lim C W, He L H. Exact solution of a compositionally graded piezoelectric layer under uniform stretch, bending and twisting[J]. IntJ Mech Sci, 2001, 43: 2479-2492. |
[6] | Yang J, Chen H S. Dynamic response of initially stressed functionally graded rectangular thin plates [J]. Composite Structures, 2001, 54: 497-508. |
[7] | Yang J, Shen H S. Dynamic response of functionally graded rectangular thin plates[J]. Composite Structures, 2001, 54(4) : 497-508. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%