欢迎登录材料期刊网

材料期刊网

高级检索

基于SHS反应火焰喷涂技术,采用Ti-B4C-C喷涂体系,在钢基表面制备了TiC-TiB2复相陶瓷涂层.通过对SHS火焰喷涂陶瓷涂层的电子显微观察和X射线衍射及能谱分析,探讨了SHS反应火焰喷涂TiC-TiB2复相陶瓷涂层的组织结构及成因.研究发现,涂层是一种复相非均质、传统热喷涂层状涂层特征不明显的亚稳结构.涂层由占主体的TiC0.7N0.3、TiC0.2N0.8、TiB2相和少量TiO2、Ti2O、Ti3O5相及气孔组成.涂层中有三类特征各异的组织,即尺度在微-纳米级呈团簇状分布的组织,尺寸在1~3μm之间呈等轴状颗粒分布的组织和呈深黑色的不规则气孔.三类组织是由在喷涂粒子与基材接触之前,喷涂团聚粉粒经飞行燃烧和反应合成形成的熔融陶瓷液滴(又分为实心和空心两类)和不规则陶瓷颗粒(其形状与原喷涂团聚颗粒一样,但组织结构已发生转变,基本成为陶瓷相)与基材碰撞变形、冷却凝固、快速结晶形成的.

参考文献

[1] 朱春城,曲伟,张幸红,等.TiC-TiB2复合材料的研究进展[J].材料导报,2003,17(1):48-51.Zhu Chuncheng,Qu Wei,Zhang Xinhong,et al.Progress in research on TiC-TiB2 composites[J].Materials Guide Report,2003,17(1):48-51.
[2] Li Jianlin,Li Fei,Hu Keao,et al.TiB2/TiC nanocomposite powder fairicated via high energy ball milling[J].Journal of the European Ceramic Society,2001,21(2):2829-2833.
[3] Kustas F,Mishra B,Zhou J.Fabrication and characterization of TiB2/TiC and tungsten co-sputtered wear coatings[J].Surface and Coatings Technology,2002 153:25-30.
[4] Wang H Y,Jiang Q C,Zhao Y Q,et al.Fabrication of TiB2 and TiB2-TiC particulates reinforced magnesium matrix composites[J].Materials Science and Engineering,2004,372(3):109-114.
[5] 王业亮,傅正义,王皓,等.TiB2-TiC复合粉的自蔓延高温还原合成[J].复合材料学报,2003,20(1):16-21.Wang Yeliang,Fu Zhengyi,Wang Hao,et al.Synthesis of TiB2-TiC composite powder by SHS reduction process[J].Acta Materiae Compositae Sinica,2003,20(1):16-21.
[6] Bhaumik S K,Divakar C,Singh A K,et al.Synthesis and sintering of TiB2 and TiB2-TiC composite under high pressure[J].Materials Science and Engineering,2000,279(1):275-281.
[7] Klinger L,Gotman I,Horvitz D.In situ processing of TiB2/TiC ceramic composites by thermal explosion under pressure:Experimental study and modeling[J].Materials Science and Engineering A,2001,302(1):92-99.
[8] Lee J W,Munir Z A,Ohyanagi M.Dense nanocrystalline TiB2-TiC composites formed by field activation from highenergy ball milled reactants[J].Materials Science and Engineering A,2002,325(1/2):221-227.
[9] Lee Kitty W,Chen Yu-Hsia,Chung Yip-Wah,et al.Hardness,internal stress and thermal stability of TiB/TiC multiplayer coatings synthesized by magnetron sputtering with and without substrate rotation[J].Surface and Coatings Technology,2004,177/178:591-596.
[10] 杜心康,王建江,周珑,等.SHS反应喷涂Al2O3-Al2Cu3涂层形成过程与工艺研究[J].稀有金属材料与工程,2004,33(4):142-146.Du Xinkang,Wang Jianjiang,Zhou Long,et al.Research on procedure and technological parameter of Al2O3-Al2Cu3 coating produced by SHS reactive spraying[J].Rare Metal Materials and Engineering,2004,33(4):142-146.
[11] 王建江,杜心康,王俊英,等.SHS火焰喷涂Al2O3基复相陶瓷涂层机理[J].复合材料学报,2004,21(3):63-68.Wang Jianjiang,Du Xinkang,Wang Junying,et al.Research on mechanism of SHS reactive flame spraying Al2O3-based multi-phase coating[J].Acta Materiae Compositae Sinica,2004,21(3):63-68.
[12] 王建江,杜心康,赵忠民,等.粉体聚集状态对自蔓延高温合成反应喷涂Al2O3/Al2Cu3涂层的影响[J].金属热处理,2004,29(1):62-65.Wang Jianjiang,Du Xinkang,Zhao Zhongmin,et al.Influence of aggregating state of particle on Al2O3-Al2Cu3 coating produced by SHS reactive spraying[J].Heat Treatment for Metals,2004,29(1):62-65.
[13] 郭景杰,傅恒志.合金熔体及处理[M].北京:机械工业出版社,2005:25-26.Guo Jingjie J,Fu Hengzhi.Melt Alloy and Treatment[M].Beijing:China Machine Press,2005:25-26.
[14] 刘宏伟,张龙,赵忠民,等.自蔓延高温合成基础理论研究进展[J].军械工程学院学报,2002,14(2):1-5.Liu Hongwei,Zhang Long,Zhao Zhongmin,et al.A review of recent progress of spray forming technique[J].Journal of Ordnance Engineering College,2002,14(2):1-5.
[15] 邓世均.高性能陶瓷[M].北京:化学工业出版社,2004:57-69.Deng Shijun.High Performance Ceramics[M].Beijing:Chemical Industry Press,2004:57-69.
[16] 斯温M V.陶瓷的结构与性能[M].郭景坤,译.北京:科学出版社,1998:172.Swen M V.Ceramics Structure and Performance[M].Guo Jingkun (translator).Beijing:Science Press,1998:172.
[17] 毛裕文.冶金熔体[M].北京:冶金工业出版社,1994:130-135.Mao Yuwen.Metallurgy Melt[M].Beijing:Metallurgical Industry Press,1994:130-135.
[18] 朱春城,林红.TiC-TiB2复合陶瓷的自蔓延高温合成[J].哈尔滨师范大学自然科学学报,2003,19(1):69-72.Zhu Chuncheng,Lin Hong.Self-propagation high-temperature synthesis of TiC-TiB2 ceramics[J].Journal of Harbin Normal University,2003,19(1):69-72.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%