欢迎登录材料期刊网

材料期刊网

高级检索

基于微极理论细观力学方法,详细分析了近片层γ-TiAl基合金材料有效弹性性能的微结构尺度效应.采用空间角度平均方法处理近片层γ-TiAl基合金中横观各向同性PST(Polysynthetically twinned crystal)颗粒夹杂的空间任意取向分布,并将Mori-Tanaka法推广到微极介质,建立了近片层γ-TiAl基合金材料的有效弹性模量及其尺度效应的分析模型.结果表明:当PST夹杂颗粒直径尺度a与微极基体材料(等轴γ颗粒)的特征长度lm相当时,合金材料的有效弹性模量的大小将受到夹杂PST颗粒大小的影响,夹杂颗粒尺度减小,有效弹性模量增大;而当PST夹杂颗粒直径a与微极基体材料的特征长度lm相比很大时,微极理论对有效弹性模量预测的结果将趋近于采用传统Cauchy介质理论预测的结果.

参考文献

[1] Appel F,Wagner R.Microstructure and deformation of two-phase γ titanium aluminides[J].Materials Science and Engineering,1998,22(5):187-268.
[2] Kim Y M.Ordered intermetallic alloys Ⅲ:Gamma titanium aluminides[J].Journal of Metall,1994,46(7):30-39.
[3] Fujiwara T,Nakamura A,Hosomi M,et al.Deformation of polysynthetically twinned crystals of TiAl with a nearly stoichiometric composition[J].Philosophical Magazine A,1990,61(4):591-606.
[4] 林建国,张永刚,陈昌麒.片层宽度对全片层TiAl合金蠕变性能的影响[J].材料研究学报,2001,15(5):565-570.Lin Jianguo,Zhang Yonggang,Chen Changqi.Effects of lamellar spacing on the creep behavior of a cast TiAl alloy with fully lamellar structure[J].Chinese Journal of Materials Research,2001,15(5):565-570.
[5] Dimiduk D M,Parthasarathy T A,Peter Hazzledine P M.Design-tool representations of strain compatibility and stressstrain relationships for lamellar gamma titanium aluminides[J].Intermetallics,2001,9(10):875-882.
[6] Fischer F D,Appel F,Clemens H.A thermodynamical model for the nucleation of mechanical twins in TiAl[J].Acta Materialia,2003,51(5):1249-1260.
[7] Dimiduk D M,Hazzledine P M,Parthasarathy T A.The role of grain size and selected microstructure parameters in strengthening fully lamellar TiAl alloys[J].Metallurgical and Materials Transactions A,1998,29A(1):37-47.
[8] Eringen A C.Theory of Micropolar Elasticity in Fracture[M].(Vol Ⅱ.Liebowitz H,ed.) New York:Academic Press,1968:621 -729.
[9] Mindlin R.Microstructure in linear elasticity[J].Arch Rat Mech Anal,1964,16(1):51-78.
[10] Eringen A C.Microcontinuum Field Theory[M].New York:Springer-Verlag,1999:11-13.
[11] German P.La methode des puissances virtuelles en mecanique des milieux continues premiere partie:Theorie du second gradient[J].Journal de Mecanique,1973,12(2):235-274.
[12] Liu Xiaoning,Hu Gengkai.A continuum micromechanical theory of overall plasticity for particulate composites including particle size effect[J].International Journal of Plasticity,2005,21(4):777-799.
[13] Nowacki W.Theory of Asymmetric Elasticity[M].New York:Pergamon Press,1986:362-376.
[14] Cheng Z Q,He L H.Micropolar elastic fields due to a spherical inclusion[J].International Journal of Engineering Science,1995,33(3):389-397.
[15] Cheng Z Q,He L H.Micropolar elastic fields due to a circular cylindrical inclusion[J].International Journal of Engineering Science,1997,35(7):659-668.
[16] Walpole L J.On the overall elastic moduli of composite materials[J].Journal of Mechanics and Physics of Solids,1969,17:235-251.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%