欢迎登录材料期刊网

材料期刊网

高级检索

以矩形蜂窝为例,介绍了正交各向异性蜂窝填充的夹层蜂窝结构散热性能和散热一承载性能优化设计,给出了正交各向异性蜂窝相关系数的推导过程.从实际应用出发,针对常规以性能乘积形式构造的散热一承载性能指标对散热性能侧重程度的不足,给出了基于2种双层规划模型的非确定性设计方法,得到了旨在强调散热性能设计意图的散热-承载多目标优化问题的有效解集.这种方法对结构敏感参数较多的正交各向异性蜂窝填充结构的多功能优化设计非常有效.最后讨论了不同尺寸效应下的蜂窝最优结构参数.

参考文献

[1] Evans A G,Hutchinson J W,Fleck N A,Ashby M F,Wadley H N G.The topological design of multifunctional cellular metals[J].Prog Mater Sci,2001,46:309-327.
[2] Wei Z,Zok F W,Evans A G.Design of sandwich panels with prismatic cores[J].Journal of Engineering Materials and Technology,2006,128(2):186-192.
[3] 沈伋.李为吉.蜂窝夹芯结构的电磁、重量多目标优化设计[J].西北工业大学学报,1999,17(4):665-670.Shen Ji,Li Weiji.Muhiobjective optimum design of honeycomb sandwich composite structure with electromagnetism and weight requirements[J].Journal of Northwestern Polytechnical University,1999,17(4):665-670.
[4] 张永存,刘书田.金属蜂窝材料换热性能分析快速数值算法[J].复合材料学报,2008,25(3):197-201.Zhang Yongcun,Liu Shutian.Fast numerical algorithm for heat transfer efficiency of metallic honeycomb materials[J].Acta Materiae Compositae Sinica,2008,25(3):197-201.
[5] Gu S,Lu T J,Evans A G.On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity[J].International Journal of Heat and Mass Transfer,2001,44:2163-2175.
[6] Groppi G,Tronconi E.Design of novel monolith catalyst supports for gas/solid reactions with heat exchange[J].Chemical Engineering Science,2000,55:2161-2171.
[7] Seepersad C C,Dempsey B M,Allen J K,Mistree F,McDowell D L.Design of muhifunctional honeycomb materials[J].AIAA J,2004,42(5):1025-1033.
[8] Wang Bo,Cheng Gengdong.Design of cellular structures for optimum efficiency of heat dissipation[J].Structural and Multidisciplinary Optimization,2005,30:447-458.
[9] Wang Bo,Cheng Gengdong.Design of cellular structures for optimum efficiency of heat dissipationt A three dimensional formulation[C]∥Bendsφe M P,Olhoff N,Sigmund O,eds.IUTAM Symposium on Topological Design Optimization of Structures,Machines and Materials:Status and Perspectives.Netherlands:Springer,2006:107-116.
[10] Groppi G,Tronconi E.Continuous vs discrete models of nonadiabatic monolith catalysts[J].AIChE Journal,1996,42(8):2382-2387.
[11] Wang Bo,Cheng Gengdong.Concurrent design of cellular structures on optimum efficiency of heat dissipation[C]∥Zhang Weihong,Beckers P.International Workshop 2007:Advancements in Design Optimization of Materials,Structures and Mechanical Systems.Xi'an:Northwestern Polytechnical University and University De Liege,2007:212-223.
[12] Tian J,Kim T,Lu T J,Hodson H P,Queheillah D T,Wadley H N G.The effects of topology upon fluid flow and heattransfer within cellular copper structures[J].International Journal of Heat Mass Transfer,2004,47:3171-3186.
[13] Valdevit P A,Stone H A,Evans A G.Optimal active cooling performance of metallic sandwich panels with prismatic cores[J].International Journal of Heat and Mass Transfer,2006,49(21/22):3819-3830.
[14] 王博,王斌,程耿东.Kagome蜂窝夹层平板的多功能优化设计[J].复合材料学报,2007,24(3):109-115.Wang Bo,Wang Bin,Cheng Gengdong.Multifunctional design of sandwich panels with Kagome-like cores[J].Acta Materiae Compositae Sinica,2007,24(3):109-115.
[15] 刘书田,刘鹏,张永存,王博.二维多孔材料散热性能分析与设计[J].复合材料学报,2008,25(1):147-152.Liu Shutian,Liu Peng,Zhang Yongcun,Wang Bo.Heat dissipation analysis and design of two-dimensional cellular materials[J].Acta Materiae Compositae Siniea,2008,25(1):147-152.
[16] 程宝华,李先瑞.板式换热器及换热装置技术应用手册[M].北京:中国建筑工业出版社,2005:1-68.
[17] 王博.蜂窝结构多功能优化设计[D].大连:大连理工大学,2007.
[18] Shah R K,London A L.Laminar flow forced convection in ducts[M]∥Advances in heat transfer.New York:Academic Press,1978:405-410.
[19] Wang A J,McDowell D L.In-plane stiffness and yield strength of periodic metal honeycombs[J].Journal of Engineering Materials and Technology,2004,126:137-156.
[20] 胡毓达.实用多目标最优化[M].上海:上海科学技术出版社,1990:33-34,96-99.
[21] Sadasivam R,Manglik R M,Jog M A.Fully developed forced convection through trapezoidal and hexagonal ducts[J].Internstional Journal of Heat and Mass Transfer,1999,42:4321-4331.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%