欢迎登录材料期刊网

材料期刊网

高级检索

从微观离散分子力学出发,考虑力学化学的交互作用和材料微观组织的影响,建立了纤维增强聚合物基复合材料的力学化学分子链疲劳损伤模型在模型中引入表示基体树脂和界面分子链断裂数占材料分子链总数的比例Am和Al来描述基体断裂主导和界面断裂主导的损伤,给出剩余强度与疲劳过程中微观断裂机理、结构参数、物理化学参数和力学性能变化之间的关系与短玻璃纤维增强树脂基复合材料(SMC)的恒载荷疲劳实验结果比较,本模型预测的疲劳剩余强度与实验值吻合得比较好,

参考文献

[1] LI Zhijun(李志军),CHENG Guangxu(程光旭),DUAN Quan(段权),Journal of Xi'an Jiaotong University(西安交通大学学报),36(1),90(2000)
[2] A.Plumtree,Guangxu Cheng,Plastics,Rubber and Composites,27(8),349(1998)
[3] E.Altus,Foundation of a Mechano-Chemical Fatigue Theory,Institute for Aerospace Studies,UTIAS Report,University of Toronto,Canada,1989
[4] QU Jinping(瞿金平),HU Haanjie(胡汉杰),Polymer Processing Principle and Technology(聚合物成型原理及成型技术)(Beijing,Chemica¨ndustry Press,2001,First edition)p.82
[5] ZAO Zhongwei(赵中伟),ZAO Tiancon(赵天从),LI Honggui(李洪桂),Non-Ferrous Metal of Hunan Province(湖南有色金属),11(2),44(1995)
[6] ZHANG Shiqi(张士齐),Synthetic Rubber Industry(合成橡胶工业),18(5),257(1995)
[7] ZHU Ming(朱敏),Chemistry and Physics of Rubbet(橡胶化学与物理)(Bejing,Chemical Industry Press,1984)p.3
[8] I.R.Gelling,Rubber Chem.and Tech.,58(1),86(1985)
[9] S.Roy,Elastomers and Plastics,20(4),280(1990)
[10] A.E.Somers,T.J.Bastow,M.I.Burgar,Polymer Deg.and Stab.,70(1),31(2000)
[11] J.N.Yang,D.L.Jones,Journal of Composite Materials,24(6),753(1987)
[12] XU Fenghe(许凤和),Mechanical Test of Polymer Materials(高分子材料力学试验)(Beijing,Academic Press,1988)p.5
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%