欢迎登录材料期刊网

材料期刊网

高级检索

研究了一种具有纳米孪晶片层结构的电解沉积铜的微观结构特征及其在室温轧制形变后的微观结构演变.结果表明,电解沉积制备的纯铜样品由柱状晶组成,柱状品内含有平行于样品沉积表面的纳米量级厚度的高密度孪晶片层结构,在孪晶界上缺陷很少,为共格孪晶界.形变后,孪晶片层的微观结构特征与片层厚度密切相关.粗大的孪品片层的形变行为以全位错运动为主,而细小的孪晶片层的形变行为以肖克莱(Shockley)位错在孪晶界上的滑移为主,从而导致几个纳米厚的超细孪晶片层消失.

参考文献

[1] M.A.Meyer,L.E.Murr,A model for the formation of annealing twins in F.C.C.metals and alloys,Acta Matall.,26,951(1978)
[2] J.W.Christian,S.Mahajan,Deformation twinning,Prog.Mater.Sci.,39,1(1995)
[3] L.C.Lim,Slip-twin interactions in nickel at 573 K at large strains,Scr.Metall.,18,139(1984)
[4] M.D.Merz,S.D.Dahlgren,Tensile strength and work hardening of ultrafine-grained high-purity copper,J.Appl.Phys.,46,3235(1975)
[5] C.S.Pande,B.B.Rath,M.A.Imam,Effect of annealing twins on Hall-Petch relation in polycrystalline materials,Mater.Sci.Eng.A,367,171(2004)
[6] L.Lu,Y.F.Shen,X.H.Chen,L.H.Qian,K.Lu,Ultrahigh strength and high electrical conductivity in copper,Science,304(5669),422(2004)
[7] Y.F.Shen,L.Lu,Q.H.Lu,Z.H.Jin,K.Lu,Tensile properties of copper with nano-scale twins,Scr.Mater.,52,989(2005)
[8] A.G.Froeth,H.Van Swygenhoven,P.M.Derlet,Dislocations emitted from nanocrystalline grain boundaries:nucleation and splitting distance,Acta Mater.,52(8),2259(2004)
[9] A.G.Froeth,P.M.Derlet,H.Van Swygenhoven,Vicinal twin boundaries providing dislocation sources in nanocrystalline Al,Scr.Mater.,54,477(2004)
[10] L.Lu,M.L.Sui,K.Lu,Superplastic extensibility of nanocrystalline copper at room temperature,Science,287,1463(2000)
[11] E.Abe,S.Kajiwara,T.Kumagai,M.Nakamura,Highresolution electron microscopy of twin interfaces in massively transformed gamma-TiAl,Philos.Mag.,A,75,975(1997)
[12] A.Rohatgi,K.S.Vecchio,G.T.Gray,The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys:Deformation twinning,work hardening,and dynamic recovery,Metall.Mater.Trails.,32A(1),135(2001)
[13] D.A.Hughes,N.Hansen,Deformation structures developing on fine scales,Philos.Mag.,83,3871(2003)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%