欢迎登录材料期刊网

材料期刊网

高级检索

用熔融-急冷法制备了Ge14Ga3S37(CdS)3硫系玻璃样品,使用Maker条纹法观察了电场-温度场极化样品中的二次谐波发生(SHG)现象,研究了极化条件对SHG强度的影响、该效应产生的机理以及SHG现象室温下的稳定性.结果表明,极化样品中存在明显的二次谐波发生现象,入射角在±(40~50)°左右时,SHG的相对强度出现最大值;SHG的强度随着极化电压的增大和极化时间的延长而逐渐增强并渐趋饱和;在5 kV、280℃、30分钟的极化条件下,极化样品的二阶非线性极化系数χ(2)达到最大值4.36 pm/V;根据偶极子取向模型阐释了SHG产生机理以及极化条件对样品二阶光学非线性系数大小的影响机制;发现玻璃的电致极化区域位于阳极表面以下十几微米的区域,SHG效应在室温下是稳定的.

参考文献

[1] U.Osterberg,W.Margulis,Dye laser pumped by Nd:YAG laser pulses frequency doubled in glass optical fiber,Optics Letters,8(11),516(1986)
[2] R.A.Myers,N.Mukherjee,S.R.J.Brueck,Large second-order nonlinearity in poled fused silica,Optics Letters,22(16),1732(1991)
[3] P.G.Kazansky,A.Kamal,P.St.J.Russell,High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation,Optical Letters,18(9),693(1993)
[4] Yasuhiko BENINO,Takumi FUJIWARA.Evaluation techniques of optically functional photonics materials Bulletin of The Ceramic Society of Japan,37(2),95(2002)(红野安彦,藤原巧.高机能フォトニクス材料の机能评价技术,セヲミックス,37(2),95(2002))
[5] M.Guignard,V.Nazabal,J.Troles,F.Smektala,Secondharmonic generation of thermally poled chalcogenide glass,Optics Express,13(3),789(2005)
[6] Michael Fokine,Kazuya Saito,Akira J.Ikushima,Thermally induced second-order nonlinearity in silica-based glasses,Applied Physics Letters,87,171907-1(2005)
[7] Richard A.Myers,Xiangcun Long and S.R.J.Brueck.Recent advances in the second-order nonlinear optical properties of amorphous silica materials,Doped Fiber Devices and Systems,2289,98(1994)
[8] LIU Qiming,ZHAO Xiujian,GU Yuzong,HUANG Mingju,GU Donghong,GAN Fuxi,Properties of Ge-As-S Chalcogenide amorphous semiconductor,Chinese Journal of Materials Research,16(2),164(2002)(刘启明,赵修建,顾玉宗,黄明举,顾冬红,干福熹,硫系Ge-As-S玻璃和薄膜的特性,材料研究学报,16(2),164(2002))
[9] J.Zarzycji Springer-Verlag,Translated by GAN Fuxi,HOU Lizhong,Glass and Amorphous Materials (Beijing,Science Industry Press,2001) p.330(J.扎齐斯基,干福熹、侯立松译,玻璃与非晶态材料(北京,科学出版社,2001)p.330)
[10] Xuefeng Wang,Shaoxuan Gu,Jiagou Yu,Xiujian Zhao,Haizheng Tao.Formation and properties of chalcogenide glasses in the GeS2-Ga2S3-CdS system,Materials Chemistry and Physics,83,284(2004)
[11] GU Saoxuan,HU Haiping,GUO Haitao,YUAN Kai,ZHAO Xiujian,Second-harmonic generation of electrical poling in GeS2-Ga2S3-CdS chalcogenide glass,Chinese Journal of Lasers,33(5),687(2006)(顾少轩,胡海平,郭海涛,袁凯,赵修建,GeS2-Ga2S3-CdS硫系玻璃的电致二阶非线性光学效应,中国激光,33(5),687(2006))
[12] A.Kudlinski,Y.Quiquempois,M.Lelek,H.Zeghlache,G.Martinelli,Complete characterization of the nonlinear spatial distribution induced im poled silica glass with a submicron resolution,Applied Physics Letters,83,3623(2003)
[13] Hiroyuki Nasu,Jun Matsuoka,Kanichi Kamiya.Second-and third-order optical non-linearity,Journal of Non-Crystalline Solida,175,23(1994)
[14] Munetoshi Seki,Kan Hachiya,Katsukuni Yoshida.Photoluminescence and states in the bandgap of germanium sulfide glasses,Journal of Non-Crystalline Solids,315,107(2003)
[15] Munetoshi Seki,Kan Hachiya,Katsukuni Yoshida.Photoluminescence excitation process and optical absorption in Ge-S chalcogenide glasses,Journal of Non-Crystalline Solids,324,127(2003)
[16] Wang-XF,Gu-SX,Yu-JG,Zhao-XJ,Tao-HZ,Stuctural investigations of GeS2-Ga2S3 CdS chalcogenide glasses using raman-spectroscopy,Solid State Communications,130(7),459(2004)
[17] Fang Junxing,Yi Zhiwen,Electrotonus Physics (Beijing,Science Industry Press,1989) p.25(方俊鑫,殷之文,电介质物理学(北京,科学出版社,1989)p.25)
[18] Han Juguang,Bai Yingxin,Jiang Zhonghong,Theoretical researches of structural adjustment and the x(2) Generation of quarta glass,Chinese Journal of Lasers,2.3(6),531(1996)(韩聚广,白迎新,姜中宏,石英玻璃结构调整和二阶非线性光学效应产生机制的理论研究,中国激光,23(6),531(1996))
[19] Fuxi Gan,Modern Galss Technology (Shanghai,Shanghai Science Press,1988) p.104(干福熹,现代玻璃科学技术(上海,上海科学技术出版社,1988)p.104)
[20] Qiming Liu,Xiujian Zhao,Katsuhisa Tanaka,Aiko Narazaki,Kazuyuki Hirao,Fuxi Gan,Second-harmonic generation in Ge-As-S glasses by electron beam irradiation and analysis of the poling mechanism,Optics Communications,198,187(2001)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%