用离子束辅助非平衡中频磁控溅射技术,在Si,高速钢或不锈钢基体上分别沉积得到了具有多组分过渡金属层缓冲的W梯度掺杂类金刚石碳(DLC)膜,研究了W靶电流对DLC膜组成、结构和性能的影响.实验表明,随着W靶电流增大,薄膜中W掺杂量增加,W的碳化物含量增加,sp~3结构含量减少;薄膜的纳米硬度和弹性模量逐渐增大,且材料抗塑性参数H/E随之增大;随W靶电流增大,材料与基体结合力增强,划痕实验临界载荷在80-100 N之间,材料摩擦系数增大;但磨损率因W掺杂而明显减小,且随W靶电流增大而减小.样品表面元素分布均匀,粗糙度(R_A)较小,R_A值在7.56-15.8 nm之间.
W graded doping diamond-like carbon (DLC) composite films with multicomponent transition layer were deposited onto silicon, high speed steel and/or stainless steel wafers using ion beam assisted mid-frequency unbalanced magnetron sputtering technique, and the infiuences of W target current on the composition, structure and properties of the DLC films were investigated. With increasing W target current, the contents of W and its carbides in the films increase, but the contents of sp~3 structure decrease. Although there might be some metal droplets on the surface of the as-prepared samples, the distribution of each element is basically homogenous over the whole surface, and the roughness of sample keeps quite low value, which is in the range of 7.56-15.8 nm. The nanohardness (H), elastic modulus (E), and their ratio, H/E, increase with increasing W target current. The critical loads in scratch test of the as-prepared samples increase with the increase of W target current and are in the range of 80-100 N, indicating very strong adhesions between the films and substrates. Under ambient circumstance, the friction coefficients of the coated samples increase but the wear rates decrease obviously
参考文献
[1] | Robertson J.Mater Sci Eng,2002; R37:129 |
[2] | Aisenberg S,Chabot R.J Appl Phys,1971; 42:2953 |
[3] | Lifshitz Y.Diamond Related Mater,1996; 5:388 |
[4] | Arnell R D,Kelly P J.Surf Coat Technol,1999; 112:170 |
[5] | McKenzie D R.Rep Prog Phys,1996; 59:1611 |
[6] | Voevodin A A,Donley M S.Surf Coat Technol,1996; 82:199 |
[7] | Weiler M,Lang K,Li E,Robertson J.Appl Phys Lett,1998; 72:1314 |
[8] | Kulisch W,Popov C,Boycheva S,Buforn L,Favaro G,Conte N.Diamond Related Mater,2004; 13:1997 |
[9] | Ueng H Y,Guo C T.Appl Surf Sci,2005; 249:246 |
[10] | Lifshitz Y.Diamond Related Mater,1999; 8:1659 |
[11] | Moller W.Appl Phys Lett,1991; 59:2391 |
[12] | Spencer E G,Schmidt P H,Joy D C,Sansalone F J.Appl Phys Lett,1976; 29:118 |
[13] | Zhao J F,Lemoine P,Liu Z H,Quinn J P,Maguire P,McLaughlin J A.Diamond Related Mater,2001; 10:1070 |
[14] | Yu G Q,Tay B K,Sun Z.Surf Coat Technol,2005; 194:236 |
[15] | Baba K,Hatada R.Surf Coat Technol,2005; 196:207 |
[16] | Baba K,Hatada R.Surf Coat Technol,2002; 158-159:373 |
[17] | Voevodin A A,Capano M A,Laube S J P,Donley M S,Zabinski J S.Thin Solid Films,1997; 298:107 |
[18] | Lee K R,Eun K Y,Kim I,Kim J.Thin Solid Films,2000; 377-378:261 |
[19] | Ma F,Li G,Li H Q,Ma H T,Cai X.Mater Lett,2002; 57:82 |
[20] | Chen C C,Hong F C N.Appl Surf Sci,2005; 243:296 |
[21] | Yang Y Y,Peng Z J,Miao H Z,Wang C B,Fu Z Q.Rare Met Mater Eng,2009; 38(supp1.2):102(杨义勇,彭志坚,苗赫濯,王成彪,付志强.稀有金属材料与工程,2009;38(增刊2):102) |
[22] | Tunistra F,Koening J L.J Chem Phys,1970; 53:1126 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%